
UNSW Law & Justice Research Series

Applying the Rule of Law
in Automated Decision Systems

through Rules as Code
(AustLII’s Submission to the

Robodebt Royal Commission)

Andrew Mowbray, Philip Chung and
Graham Greenleaf

[2023] UNSWLRS 4
 Submission to the Robodebt

Royal Commission, 2023

UNSW Law & Justice
UNSW Sydney NSW 2052 Australia

E: LAW-Research@unsw.edu.au
W: http://www.law.unsw.edu.au/research/faculty-publications
AustLII: http://www.austlii.edu.au/au/journals/UNSWLRS/
SSRN: http://www.ssrn.com/link/UNSW-LEG.html

UNSW
THE UNIVCRSITY Of NCW SOUTH WAL[S
SYDNEY · CANBERRA · AUSTRM IA

Law

www.austlii.edu.au

Australasian Legal Information Institute
A joint facility of UTS and UNSW Faculties of Law

Level 14, 61 Broadway, Ultimo NSW 2007
PO Box 123 Broadway NSW 2007

Tel: +61 2 9514 4921
Fax: +61 2 9514 4908

Email: feedback@austlii.edu.au

Applying the Rule of Law
in Automated Decision Systems through Rules as Code

(AustLII’s Submission to the Robodebt Royal Commission)

Andrew Mowbray, Philip Chung and Graham Greenleaf*
Australasian Legal Information Institute (AustLII)

9 February 2023

Introduction: Automated Decision Systems (ADS) & the Rule of Law ________________ 2
Background to AustLII and DataLex __ 2

Fundamental principles in implementing ADS ___________________________________ 3
Desirable principles in implementation of an ADS ________________________________ 5

Recommendations __ 7
Appendix: DataLex implementations ___ 8

* Andrew Mowbray is Professor of Law & Information Technology, University of Technology Sydney and Co-Director,
AustLII; Philip Chung is Associate Professor of Law, UNSW Sydney and Executive Director, AustLII; Graham Greenleaf
AM is Professor of Law & Information Systems, UNSW Sydney, and Co-Founder & Senior Researcher, AustLII.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 2

Introduction: Automated Decision Systems (ADS) & the Rule of Law
All administrative decision making including those made on an automated basis should be
based on the application of law (and in particular, legislation and other forms of regulation).
As part of this requirement, there needs to be transparency and explanation of the processes
and reasons for decisions both of fact and of law.

The approach and software used in the context of Robodebt was similar in many respects to
other Automated Decision Systems (ADS) that are in everyday and widespread use. These
systems are generally built manually or using machine learning to rely on factual artefacts to
support decision making. They generally are not directly based on legislation or, if they are,
this is not transparently encoded in a way that allows for their legal accuracy to be determined.
In most cases, explanation facilities of ADS are limited (or non-existent).

Rules as Code (RaC) is a technology that can be used to explicitly represent and apply rules
such as legislation in a range of applications. This approach can be used in automated decision
making systems to provide a “rule of law” basis for the operation of this type of software. Apart
from ensuring that decision making takes account of, and is driven by, law, this approach also
allows for explanations that can be expressed in terms of the legal basis of decisions being
made.1

In this Submission, we develop recommendations which expand on how RaC-compliant
legislation can be developed, and how it can be incorporated in automated decision systems.
First, we will set out a number of fundamental principles which we propose should apply to all
ADS developed by or for the Australian government. Second, we add a number of important
principles which should be achieved wherever possible. Finally, in an Appendix, we illustrate
how AustLII’s DataLex development environment and yscript representation language
implements these principles to provide an example of good practice.

The Terms of Reference for the Commission includes “The Royal Commission will be able to
make any recommendations it considers appropriate. This includes ways to prevent any public
administration failures identified from happening again.” We consider that adoption of
AustLII’s submissions would be effective to avoid Robodebt-like errors from recurring.

Background to AustLII and DataLex
The Australasian Legal Information Institute (AustLII) is a joint facility of the Faculties of Law
at UTS and UNSW, and has been in operation since 1995. AustLII’s mission is to promote free
and effective access to law in Australian and internationally. As part of its activities, AustLII
operates the largest and most relied upon free access legal research service2 that provides free
access to all significant Australian legislation and case law. This service receives over 230
million page accesses annually (about 700,000 accesses per day) from over 6.5 million distinct
hosts.

AustLII’s research work on Rules as Code has developed DataLex which is an applications
development environment that is suitable for building RaC codebases and applications. At the
heart of the DataLex approach is a language called “yscript” which supports the declarative

1 For an explanation of ‘Rules as Code’ see A. Mowbray, P. Chung and G.Greenleaf ‘Representing legislative Rules as
Code: Reducing the problems of ‘scaling up’ " (2021) Computer Law & Security Review
<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3981161>;
2 http://www.austlii.edu.au

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 3

representation of rules using a quasi-natural-language (“English-like”) codebase syntax. The
language facilitates a close relationship between rules and code that makes code easier to write
and maintain, and provides for high levels of transparency. This representation allows
sophisticated dialogs and explanations to be generated directly from the code.3

Fundamental principles in implementing ADS
Any ADS developed and provided by the Australian Government should implement the four
following fundamental principles. This submission applies to systems relating to decisions
about individuals (and thus involving ‘personal information’ as understood in the Privacy Act
1988) as well as systems that do not deal with personal information.

The nine principles listed in this and the next section are those which it is necessary or desirable
to observe when building an Australian government ADS. There are other principles (or
differently named versions of the same principles) which have also been suggested, often
arising from the requirements of administrative law.4 These often overlap with the principles
proposed below.

(i) Acknowledgement that an ADS implements aspects of the legal system.

The starting point for any Australian Government ADS should be an explicit written statement
of the relationship between the ADS and the rule of law. It should acknowledge that the ADS
implements specific aspects of the legal system, comprised of specified (named) statutory
provisions, regulations, Departmental manuals, interpretations of case law, and the like. The
document that sets out the starting point must be available to the public, because of the
transparency principle.

(ii) Legal requirements of explainability must be observed.

As a corollary of (i), any Australian Government ADS must include in this acknowledgement,
confirmation that it meets any Australian legal provisions concerning such matters as
explainability, FOI status, and privacy legislation compliance, and should itemise such
requirements.

Legal requirements of explainability are well known in the EU (particularly GDPR5 article 22)
but are not restricted to the 30 countries of the EU/EEA. Many other countries now have such
requirements (or related controls on automated decision systems). At least 25 jurisdictions
outside the EU6 have such controls, influenced by the EU’s DPD or GDPR, but often with
different terms. So more than 50 countries now have some controls on automated decision
systems.

3 Mowbray, Chung and Greenleaf ‘Explainable AI (XAI) in Rules as Code (RaC): The DataLex approach’ (2022) Computer
Law & Security Report
4 See, for example, T. de Sousa, P. Andrews and L. Bennet Moses ‘Submission – Royal Commission into the Robodebt
Scheme’, suggesting that ‘trustworthy automated decisions in government’ should be Transparent, Traceable, Accountable,
Appealable and Beneficial (see submission p3, and Appendix)..
5 (EU) General Data Protection Regulation (GDPR)
6 China, Macau, Philippines (Asia - 3); Ghana, South Africa, Morocco, Kenya, Uganda, Algeria (Africa - 6); Brazil,
Argentina, Uruguay, Peru (Latin America – 4); California (1); Albania, Turkey, Ukraine, Azerbaijan, Bosnia &
Herzegovina, Serbia, Russia (Europe – 7). Only the ‘Top 50% by GDP’ of jurisdictions with data privacy laws have been
considered, so that the actual number will be higher. The UK, and the three Channel Island jurisdictions should also be
added.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 4

In a country like Australia, we require ‘explainability’ of computing systems such as an ADS
that have important consequence for our lives, for a number of reasons. As we have pointed
out previously,7 those reasons are highly dependent on our relationship to the ADS:8

• Those individuals affected directly by a decision or prediction will want to understand
how it was reached, in order to be convinced of its fairness (among other things) and
the explanation will need to be understandable by them;

• Organisations utilising such systems need to understand how decisions they administer
are determined, and (usually) to keep a record of this, with the explanation being
understandable to those who run the system, and also to any parties who review such
decisions;

• Such organisational users of ADS also need to encourage individual users of the
systems they provide to trust (where justified) the outcomes of use of those systems,
and this trust may depend on explainability;

• System designers (and those who have to maintain systems) need to understand how
systems work in order to improve them, or to debug them where necessary;

• All parties involved need to be convinced that the system is operating in ways which
do not breach legal requirements;

• ‘Social licence’ for such ADS to be used in making important decisions requires a level
of trust from society as a whole.

Australian law does not at present include a general statutory requirements of ‘explainability’
which would cover all these relationships to an ADS. It would be desirable if the Commission
made recommendations for changes which addressed as many of these relationships as
possible. As suggested above in (i), this could be part of the acknowledgement accompanying
an ADS.

A survey of the provisions under Australian administrative law that could require explainability
in some form9 has shown that there are dozens of provisions in Australian federal law which
authorise the making of decisions by automated means, but they then deem those decisions to
have been made by a human decision-maker (for example, the Secretary of a government
Department), thus bringing into play all the requirements of federal law relating to the making
of decisions.

(iii) Transparency of statutory representation and other aspects of the ADS.

The statutory provisions, and other aspects of the rule of law embodied in the ADS must be
represented in an explicit representation so that they can be understood by people other than
the system developer, including those responsible for administering the use of the ADS, those
auditing it or otherwise critiquing it, and at least some of those to whom it is applied. To the
maximum extent possible, other aspects of the ADS should also be represented in a similar
way.

As an example of what is possible in this respect, one of the central aims in the development
of DataLex’s yscript language (see Appendix) was to develop a form of representation that
looked as much like natural language as possible. This was done partly to make it easier to

7 Mowbray, Chung and Greenleaf (2022)
8 Martin Ebers ‘Regulating Explainable AI in the European Union. An Overview of the Current Legal Framework(s)’ in: L.
Colonna and S. Greenstein (eds.), Nordic Yearbook of Law and Informatics 2020: Law in the Era of Artificial Intelligence,
p.4 <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3901732>.
9 M. Guihot and L. Bennett Moses Artificial Intelligence, Robots and the Law (Lexis Nexis Australia , 2020), pp 166-175..

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 5

represent legal rules, but also to make the code more transparent. Even if someone does not
have a detailed knowledge of the system, they can probably understand what it is doing and
possibly even comment upon whether it accurately encapsulates anything from the real world
(such as the text of legislation) that it is meant to reflect.

(iv) Separate representation of statutory provisions in an ADS.

The statutory provisions, and other aspects of the legal system embodied in the ADS must be
represented separately from other aspects of the ADS (such as provisions controlling order of
implementation) so that they can be understood and considered separately from the
implementation aspects.

Desirable principles in implementation of an ADS
There are other highly desirable principles which should be adopted wherever possible in the
development of an ADS, but none of them are essential, unlike the four fundamental principles
above. Each of these desirable aspects of a government ADS is first described in general terms,
and this is then followed by an example of how it is implemented in the DataLex environment
(with further details in the Appendix).

(v) Open source representation languages are preferable.

If all the components of the environment in which an ADS is developed are open source, this
prevents the requirement of transparency being frustrated by the use of proprietary systems.

In the DataLex environment (see Appendix) the yscript language is open source. The yscript
interpreter (the software that runs apps written using the yscript language) and yscript library
are available as open source10 under an Affero GPL licence.11 (see Appendix)

(vi) Isomorphic representations between statutory provisions and code are desirable.

There are many ways by which an ADS system can encourage developers to maintain a close
relationship between the code of the application and the legislation being represented,
preferably a one-to-one relationship at the section level (or equivalent). Such isomorphism
makes the code easier to build, to maintain, to audit and to understand. This is important for
transparency, explanation and maintainability. It also makes it a lot easier to build applications,
and of equal importance, it allows for simpler maintenance of the code when source legislation
or other rules change, and for legal experts to audit the accuracy of the code without being
computing experts.

In the DataLex environment (see Appendix), the rule-based structure of yscript encourages and
supports isomorphism of real-word rules (particularly legislation) into yscript code. It is
intended that yscript applications can be directly created and maintained by lawyers.

(vii) Explanatory features of the codebase should be supported.

When a government ADS uses a dialog with either a subject expert (an administration official)
or a member of the public (often then called a ‘chatbot’), it should as far as possible provide
explanatory features which show why questions are being asked, and how interim conclusions

10 The yscript source is available via the main DataLex page < main http://datalex.org/> under “Source”. The link
is: https://datalex.org/src/ys/ys-latest.tar.gz
11 An explanation of the Affero AGPL licence is at: <https://www.gnu.org/licenses/why-affero-gpl.html>.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 6

have been arrived at. It should allow user to test out hypothetical answers. It should generate a
final report which sets out all steps necessary to the final conclusion being reached.

Using the DataLex system as an example, yscript does not require questions and explanations
to be written separately from the rules that make up an application. Questions and explanations
(responses to ‘Why?’, ‘How’ and ‘Conclusions’) are generated on the fly by the yscript
interpreter from the rules when the app is running. There is therefore no textual ‘baggage’
which must be written (and maintained) in addition to its rules.

When yscript code is interpreted and run, it results in a dialog or consultation (see Appendix
for examples). A series of questions are asked, and conclusions are drawn. During the
consultation, the user can interrogate the system as to why questions are being asked (Why?),
to explain how conclusions have been reached (How?), and to delete facts so that all
conclusions depending on the fact are re-evaluated. Facts previously provided by the user can
be deleted (‘Forget’). The system also uses all information available to it, from the codebase
and user-supplied facts, to suggest other relevant Related Materials which it extracts from the
whole AustLII system and displays the most relevant results. Users can test a hypothetical
answer to a question through selection of ‘What if?’ When a session completes, a Report is
generated to give an answer to the original goals set for the consultation, and to explain why
this answer follows from the user-provided information given during the consultation. These
reports may be quite lengthy. They demonstrate the value of an ‘English-like’ interface by
showing how various and complex the interface to a government ADS can be.

(viii) Links from the codebase to specific statutory materials.

In all interactions with users of a government ADS, as far as possible there should be access to
primary legal materials (legislation and cases) so that the user can (a) understand those
materials in order to better answer questions being asked, and (b) understand conclusions being
drawn during the consultation. This makes the ADS more transparent to the user.

The DataLex interface automatically links all references to primary materials (legislation and
caselaw) in the consultation dialogs to those primary materials on AustLII.

(ix) Public availability of the codebase.

It is perhaps obvious, but worth re-stating, that the whole codebase for a government ADS
should be available to the public. It is information about how government programs are being
administered, and should be pro-actively provided to the public, not only via a FOI request.

The DataLex interface displays the whole codebase at any time, on user request. There is also
a mode in which the interface can be run during a consultation so that it displays the particular
part(s) of the codebase that are in use at each point in the consultation.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 7

Recommendations
AustLII submits that the Royal Commission should propose that any Australian Government
ADS:

1 Must commence with an explicit written acknowledgement that an ADS
implements specific aspects of the legal system, which are identified, thereby
stating its relationship to the rule of law.

2 Must include in this acknowledgement, confirmation that it meets any Australian
legal requirements concerning such matters as explainability, FOI status, and
privacy legislation compliance.

3 Must be implemented in a transparent way so as to maximise the extent to which its
effects can be understood.

4 Must represent the aspects of the legal system embodied in the ADS separately from
other aspects of the ADS.

5 Should be developed in an environment in which all the components are open
source, and are not provided by proprietary software.

6 Should maintain a close relationship between the code of the application and the
legislation being represented, if possible close to a one-to-one relationship at the
section level.

7 Should as far as possible provide explanatory features such as those which show
why questions are being asked, and how interim conclusions have been arrived at.

8 Should as far as possible provide links to primary legal materials (legislation and
cases) from the dialogs generated by the ADS.

9 Should pro-actively make the code of the ADS available to the public.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 8

Appendix: DataLex implementations
AustLII has created an applications development environment (‘DataLex’) which can be used
to develop ADS systems, using the yscript language, which implement the principles set out in
this submission. Various running examples of applications can be tested at http://datalex.org
,12 including examples on legal subjects such as the Mandatory Bargaining Code (Cth), NSW
Community Gaming Regulation, the Modern Slavery Act 2018 (Cth), and the NSW
Hairdressers Act. The yscript code for each application can be found on the DataLex site, and
the applications can be run (‘Consultations’). Users can develop and run their own test
applications using the DataLex Application Developer Tools.13 Papers explaining the DataLex
approach and software are available.14

The following extract is from ‘Explainable AI (XAI) in Rules as Code (RaC):
The DataLex approach’ (2022) Computer Law & Security Review15

5. DataLex: RaC meets XAI, in the public domain

DataLex is an applications development environment created by the university-based
Australasian Legal Information Institute (AustLII) which is suitable for developing RaC
codebases and applications.16

There are many languages and approaches for representing legislation and other forms of rules
as code. Some systems are interactive and use dedicated rule editors. The BLAWX system
developed by Jason Morris, for example, uses a “drag and drop” graphical environment for
constructing rules.17 In OpenFisca, rules are represented using a subset of the Python
programming language.18 Other systems use languages to represent rules symbolically. The
Defensible Deontic Logic (DDL) language developed by CSIRO’s Data61, for example, uses
a symbolic approach to represent rules in an extended deontic logic format.19

DataLex uses a language called “yscript” which facilitates the declarative representation of
rules using a quasi-natural-language codebase syntax (ie one resembling English). The
language facilitates a close relationship between rules and code that makes coding easier and
provides for high levels of transparency. As explained below, this allows sophisticated dialogs
and explanations to be generated directly from the code.

12 DataLex applications built with yscript <http://datalex.org>
13 DataLex Application Developer Tools http://datalex.org/dev/tools/
14 For more details, see ‘Representing legislative Rules as Code: Reducing the problems of ‘scaling up’ " (2021) Computer
Law & Security Review < https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3981161>; ‘Building DataLex decision
support systems: A tutorial on rule-‐based reasoning in law’ (2017)
<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3034430>; ‘Law as Code: Introducing AustLII’s DataLex AI’ (2021)
<ttps://papers.ssrn.com/sol3/papers.cfm?abstract_id=3971919>
15 The full article ‘Explainable AI (XAI) in Rules as Code (RaC): The DataLex approach’ is at
<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4093026 >
16 For an overview of the DataLex components, see A. Mowbray, G, Greenleaf, and P. Chung, Law as Code:  Introducing
AustLII’s DataLex AI (November 16, 2021). UNSW Law Research Paper No. 21-81, <https://ssrn.com/abstract=3971919>.
17 See https://www.blawx.com.
18 See https://openfisca.org/doc/coding-the-legislation/10_basic_example.html
19 Governatori, G., Rotolo, A., Riveret, R. (2018). A Deontic Argumentation Framework Based on Deontic Defeasible
Logic. In: Miller, T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B., Cao Son, T. (eds) PRIMA 2018: Principles and
Practice of Multi-Agent Systems. PRIMA 2018. Lecture Notes in Computer Science, vol 11224. Springer, Cham.
https://doi.org/10.1007/978-3-030-03098-8_33

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 9

For RaC codebases, human rules (such as sections contained in legislation or regulations that
are being encoded) are generally represented isomorphically (that is, human rules are mapped
on a one-to-one basis to yscript rules). Each rule element (be it a premise or conclusion) is
represented as a “fact” which is often in the form of a proposition. Rules set out the
relationships between facts (for example, “if some fact applies as well as another fact then some
conclusion can be drawn”).

There is no separate coding of what a codebase should “do”, nor for specific explanations or
of other system dialog. All interactions are generated automatically from the facts contained in
the rules, in dialogues generated ‘on the fly’ when the system is in operation.

The DataLex approach does not require the involvement of software experts and codebases can
be created directly by lawyers or legal drafters.

Applications and codebases can be collaboratively developed and maintained within the
AustLII Communities environment and integrate with AustLII using automated hypertext links
to Australian legislation and cases.20 Access to the DataLex development environment and
documentation are available from the DataLex website.21

RaC based systems built using the DataLex system meet the seven desirable features of XAI
discussed in the previous section as follows:

the yscript language is open source
The yscript interpreter (the software that runs apps written using the yscript language) and
yscript library are available as open source22 under an Affero GPL licence.23

yscript uses a quasi-natural language representation for applications
yscript24 uses a quasi-natural-language ‘English-like’ syntax, which is easy to learn and use,
supports declarative and imperative coding, and produces natural English dialogs
(consultations). While yscript is a flexible general purpose language, it is particularly useful
for representing legislation and other rules which are comprised of a structured set of
propositions.

One of the central aims in the development of yscript was to develop a form of representation
that looked as much like natural language as possible. The language syntax manages to almost
entirely avoid the use of symbols which are the principal structural elements of most
programming languages. This was done partly to make it easier to write code for non-
programmers, but also to make the code more transparent. Even if someone cannot write code
in yscript, they can probably understand what it is doing and possibly even comment upon
whether it accurately encapsulates anything from the real world (such as the text of legislation)
that it is meant to reflect.

20 DataLex Community web pages <http://austlii.community/wiki/DataLex/>.
21 See http://datalex.org
22 The yscript source is available via the main DataLex page < main http://datalex.org/> under “Source”. The link
is: https://datalex.org/src/ys/ys-latest.tar.gz
23 An explanation of the Affero AGPL licence is at: <https://www.gnu.org/licenses/why-affero-gpl.html>.
24 An earlier version of the yscript language was originally developed for the expert systems shell ysh. Prior to being
integrated into AustLII’s DataLex platform, yscript was also used as the language and code interpreter for a system called
wysh (short for “web-ysh”).

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 10

yscript encourages isomorphic representation
The rule-based structure of yscript encourages and supports isomorphism of real-word rules
(particularly legislation) into yscript code, important for transparency, explanation and
maintainability). It also makes it a lot easier to build applications, and of equal importance, it
allows for simpler maintenance of the code when source legislation or other rules change, and
for legal experts to audit the accuracy of the code without being computing experts.

An extract from the Australia's Foreign Relations (State and Territory Arrangements) Act 2020
(Cth) codebase is shown in Figure 2.

Figure 1 Extract of a DataLex codebase written in yscript

yscript does not require questions and explanations to be written separately from the rules that
make up an application. Questions and explanations (responses to ‘Why?’, ‘How’ and
‘Conclusions’) are generated on the fly by the yscript interpreter from the rules when the app
is running. There is therefore no textual ‘baggage’ which must be written (and maintained) in
addition to its rules.

It is intended that yscript applications can be directly created and maintained by lawyers.

In formal terms, yscript code consists of rules that deal with facts. Facts are expressed in their
plain English-language form. Individual rules can be imperative but more often are declarative
and describe the relationships between facts. Once a rule is being evaluated, other rules that
can help determine a value for required facts are automatically executed. Rules are used in a
goal-oriented fashion to determine values. Each time that a new fact becomes known, rules are
used to check if other fact values can be derived. When required, rules can be specifically called
like procedures or functions in other languages.

Codebases in yscript are generally publicly available
It is desirable that apps written in yscript, so that they can be run with the interpreter, should
be licensed under some form of open content licence, and made available for any user to read,25

Explanatory features of yscript apps, when running
When yscript code is interpreted and run, it results in a dialog or consultation. A series of
questions are asked, and conclusions are made. During the consultation, the user can interrogate
the system as to why questions are being asked (Why?), to explain how conclusions have been

25 The yscript code for many apps is available at <http://datalex.org>.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 11

reached (How?), and to delete facts so that all conclusions depending on the fact are re-
evaluated.

The DataLex user interface uses the DataLex software and codebases, the linkages provided
by the Communities environment, and user input, to provide legal advisory systems in
operation.

Figure 2 DataLex user interface features: Consultations, Facts, Conclusions, Related Materials

From the above user interface extract, and further interface extracts below, eight elements of
DataLex’s ‘explainability’ are shown:

1. Questions, Facts, Conclusions, and Reports are all generated from the codebase plus
user-provided facts, are in an understandable form (‘English-like’) and are available on
screen at all times.

2. Facts previously provided by the user (shown under Facts on the right side) can be
deleted (‘Forget?’), by selecting the number of user-provided fact, and questions are
then re-asked to re-establish a value for that fact.

Figure 3 DataLex ‘Forget’ a user-provided fact during consultation

3. Reasons for why a Question is being asked can be requested (‘Why?’), with the reasons
being generated on the fly from the relevant rules.

4. Conclusions are shown on the right-hand side. Selection of a numbered conclusion
results in a ‘How’ explanation of that conclusion being presented, as shown in Figure
5.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 12

Figure 4 DataLex ‘How’ explanation during consultation

5. The system also uses all information available to it, from the codebase and user-
supplied facts, to suggest other relevant Related Materials which it extracts from the
whole AustLII system and displays the most relevant results.

6. Users can test a hypothetical answer to a question through selection of ‘What if?’ (that
is, ‘what happens if I answer this way?’). When What If? is turned off, the original
question will be asked again.

Figure 5 DataLex ‘What if?’ option selected during consultation

7. The consultation can be set in Verbose mode, so that each of the rules that are fired is
displayed as they are fired, enabling the user to see the relationship between the rules
and the interface.

Figure 6 DataLex ‘Verbose’ mode enabled showing current rule being considered

8. When a session completes, a Report is generated to give an answer to the original goals
set for the consultation, and to explain why this answer follows from the user-provided
information given during the consultation. These reports may be quite lengthy.

These features are important to achieving the objective of ‘explainable AI’. They demonstrate
the value of an ‘English-like’ interface by showing how various and complex the interface to
an AI system can be. Why? and How? explanations – and What If? – show how the interactions
in a consultation can be constantly explaining aspects of the system’s reasoning to a user. The
explanations available for each Conclusion, and their being amalgamated into a lengthy Report
at the end of the consultation, both generated from the rules that have been fired, and the user-
provided answers to questions.

Explanations to link to source
The DataLex interface automatically links all references to primary materials (legislation and
caselaw) to AustLII where available.

Using ylegis to make law and code identical
The Hairdressers Act 2003 (NSW) example also illustrates two ways of representing Rules as
Code in DataLex. One way is to code existing legislation in yscript as part of a conversion

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 13

process (the majority of current example codebases are written in yscript). Another approach
is to write the legislation in a natural language format that can also be executed as code (the
ylegis format). A pre-processor program (ylegis) takes a section of legislation (or multiple
sections) and converts it automatically into a ‘first draft’ of yscript code for those legislative
provisions, which can immediately be run by the yscript interpreter.26

The ylegis format can be used to write legislation in a form that is close to existing conventional
legislative drafting but requires relationship between separate propositions be defined by a
formal set of connectors (such as ‘and:’ and ‘or:’) and these operators are used to connect
subsections and subclauses each of which contains only a single proposition.27

Using s4(1) of the Hairdressers Act 2003 (NSW) as an example, the following three figures
show the original drafting (Figure 8), the section being coded in yscript (Figure 9) and the
section rewritten in the ylegis format (Figure 10).

Figure 7 Section 4(1) of the Hairdressers Act 2003 (NSW)

26 For details and examples, see A. Mowbray, P. Chung, and G. Greenleaf, ‘Representing legislative Rules as Code:
Reducing the problems of ‘scaling up’’ (December 9, 2021). <https://ssrn.com/abstract=3981161>
27 See Mowbray, Chung, Greenleaf “Representing legislative Rules as Code: Reducing the problems of ‘scaling up’”

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 14

Figure 8 Section 4(1) of the Hairdressers Act 2003 (NSW) in yscript format

Figure 9 Section 4(1) of the Hairdressers Act 2003 (NSW) in ylegis format

When drafting legislation using the ylegis approach, the resulting text is both legislation and
code.28 This means that if a piece of legislation is written using the ylegis format, an
intermediate yscript version will be generated automatically during execution on which
explanations will be based without having to code a separate version of the legislation in
yscript.

This is a different approach to explainability: the legislation is the code. Legislation drafted in
ylegis is simultaneously the human-readable version of the legislation, and also the machine-
processable version of the legislation. Both versions will give rise to the same questions of

28 See <http://austlii.community/foswiki/DataLex/HairdressersActKB>.

Electronic copy available at: https://ssrn.com/abstract=4355989

Applying the Rule of Law in Automated Decision Systems through Rules as Code 15

statutory interpretation in relation to the meaning of terms that are used. Legislation drafted in
ylegis format has the same desirable features of explainability as legislation represented in
yscript (as set out in the following section).

DataLex apps as explainable AI
Explainability is demonstrated in the numerous applications written in yscript that are on the
DataLex web pages,29 including examples on legal subjects such as the Mandatory Bargaining
Code (Cth), NSW Community Gaming Regulation, the Modern Slavery Act 2018 (Cth), and
the NSW Hairdressers Act. The yscript code for each application can be found on the DataLex
site, and the applications can be run (‘Consultations’). Users can develop and run their own
test applications using the DataLex Application Developer Tools.30

In summary, we can now check which of the seven desirable features of explainability (see
section 3.4) are provided in DataLex’s implementation of RaC:

Transparency – yscript interpreter software is open source; yscript language for app
development is humanly-understandable (‘quasi-natural language’ or ‘English
like’); When yscript apps run, they are able to explain their questions, reasoning and
conclusions while running.

Traceability – yscript rules can have as close to an isomorphic relationship as is
achievable to the sources on which the coded rules are based.

Availability – yscript code bases for apps should be publicly available, and re-usable
by others (and are for many examples).

Sustainability – Run-time explanations in yscript apps are generated from the logic
and text of the app (not from pre-formulated separate answers or questions).

Links to the legal sources justify all run-time explanatory features.

The same qualities apply to legislation written in ylegis format.

One desirable feature (‘accountability’) requires an answer to the question of whether legal
authorities that make codebases available also make themselves accountable for the codebase
being an accurate counterpart to its legal text equivalent. It is a question for governments, not
RaC developers.

29 DataLex web pages <http://datalex.org/>
30 DataLex Application Developer Tools <http://datalex.org/dev/tools/>

Electronic copy available at: https://ssrn.com/abstract=4355989

	Cover Sheet- 4
	SSRN-id4355989

