Law

University of New South Wales Law Research Series

AUSTLII'S DATALEX DEVELOPER'S MANUAL
(1ST EDITION, JUNE 2019)

ANDREW MOWBRAY, GRAHAM GREENLEAF AND PHILIP
CHUNG

[2019] UNSWLRS 65

UNSW Law
UNSW Sydney NSW 2052 Australia

E: unswirs@unsw.edu.au
W: http://www.law.unsw.edu.au/research/faculty-publications

AustLIl: http://www.austlii.edu.au/au/journals/lUNSWLRS/
SSRN: http://www.ssrn.com/link/UNSW-LEG.html

mailto:unswlrs@unsw.edu.au
http://www.law.unsw.edu.au/research/faculty-publications
http://www.austlii.edu.au/au/journals/UNSWLRS/
http://www.ssrn.com/link/UNSW-LEG.html

AustLII’s
DataLex Developer’s

Manual

Australasian Legal Information Institute (AustLII)

First Edition
JUNE 2019

A g
~ Datal.ex

Andrew Mowbray

AustLII

University of Technology Sydney
andrew@austlii.edu.au

Graham Greenleaf
AustLII

UNSW Sydney
graham@austlii.edu.au

Philip Chung

AustLII

UNSW Sydney
philip@austlii.edu.au

Copyright © 2019 Andrew Mowbray, Graham Greenleaf and Philip Chung

Andrew Mowbray is Professor Law and Information Technology, University of Technology
Sydney and Co-Director, AustLIL

Graham Greenleaf AM is Professor of Law & Information Systems, UNSW Sydney and Senior
Researcher, AustLII.

Philip Chung is Associate Professor of Law, UNSW Sydney and Executive Director, AustLIL
AustLIl, Sydney, Australia
http://www.austlii.edu.au/
AustLII is a joint facility of UTS and UNSW Faculties of Law.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

First Edition, June 2019

http://www.austlii.edu.au/

Contents

DataLex legal knowledge-base systems
1.1 Components of AustLIl's Datalex legal
knowledge-base systems
1.2 Conventions used in this Manual
1.3 Theoretical foundations of the DataLex approach
14 Creating a new knowledge-base in the DatalLex
Community
15 Creating a new knowledge-base wusing the
DevelopmentTools
1.6 UpdatestothisManual

Rule-based inferencing (I): Knowledge-bases and rules

21 Introduction
2.2 Knowledge-basesandrules
2.3 Content of rules - keywords and descriptors
24 Exampleofarule—FOIl Actsll
2.5 Running and de-bugging a DataLex application

2.6 Some style guidelines for DatalLex applications

Rule-based inferencing (II): Descriptors, keywords and
expressions

3.1 Attributes (or ‘Facts’)
32 Constants.
3.3 Generating questions and explanations
3.4 Named subjects - names of people and things
3.5 Variable attributes [advanced]
3.6 Expressions - the use of operators

Rule-based inferencing (III): Rule types, statements and
evaluation order
4.1 Order of evaluation of rules, and within rules, in
inferencing L L oL oL
4.2 Goals - LISTED rules and GOALrules
4.3 Order of evaluationofrules
44 Typesofrules
45 Statements
4.6 Appendix - List of Main Keywords (all types) used by
Datalex

31

MOWBRAY, GREENLEAF & CHUNG

Integration of DataLex knowledge-bases with AustLII and

other LIIs

5.1 Overview - Integration of DatalLex knowledge-bases
with theirsources

5.2 Automatic links to AustLII legislation

53 Automaticlinkstocaselaw

5.4 Explicit links in a knowledge-base (the LINK ... TO ...
keywords) L oL

5.5 Stored searches from DataLex knowledge-bases

5.6 ‘Co-operative inferencing’ - knowledge-bases in
multiple locations

Document assembly using DataLex
6.1 DOCUMENTrules
6.2 Text generation statement types - PARAGRAPH and
TEXT . ..
6.3 ‘Personalising’ documents - embedded attributes
6.4 Alternative clauses in a document
6.5 Generating successive paragraphs of a document - use
of CALLstatements
6.6 Numbering paragraphs
6.7 Integration of inferencing and document generation . .
6.8 Use of other DataLex features with document assembly
6.9 Example-awill generator

Case-based (example-based) inferencing using DataLex
7.1 Example-based reasoning —overview
7.2 Relationship between examples and rules in DataLex’s
inferencing oo oL
7.3 Knowledge representation - EXAMPLEs
74 Anexample of a case representation by EXAMPLEs . .
7.5 Reports generated by DataLex EXAMPLE reasoning . .
7.6 Principles behind the case-based inferencing component
7.7 Stepsin developing an EXAMPLEset

DataLex user interface manual

8.1 Relationship to the previous chapters
8.2 Starting a consultation
8.3 Choiceofgoals
8.4 Answeringquestions L.
8.5 Showing facts (What?)
8.6 Forgetting facts (Forget)
8.7 Obtaining explanations for conclusions (How?)
88 Reports o
8.9 Linkstosources
8.10 Viewing consultations in verbose mode

41

41
41
42

43
43

43

45
45

46
47
48

49
49
50
50
51

55
55

1
I DataLex legal knowledge-base systems

1.1 Components of AustLIl's DataLex legal knowledge-base
systems

AustLIl's DataLex inferencing software allows the development of
Internet-based ~ applications ~ combining knowledge-based
inferencing, a limited form of example-based inferencing, and
automated document assembly. Applications are in the form of a
plain-text knowledge-base (KB), which is written in a quasi-natural
language knowledge representation.

The DataLex legal knowledge-based system has the following
principal components:

DATALEX
KNOWLEDGE-BASE

Datalex Inferencing
Software

SINO SEARCH
CONCORDANCES

AustLll Communities: - Context and Self-
Development and Updating Tools:

Editing Tools Reerinisgace LawCite and Sino

LAWCITE CITATION
RECORDS

Figure 1.1: Components of the DataLex
system.

Y

AustLll Communities:
Markup and Linking
Tools

This Manual describes the development and use of AustLIl's

DataLex legal knowledge-base systems as at June 2019.! ! Parts are derived from A Mowbray,
G Greenleaf, G King & S Cant Wysh
Developer’s Manuals, AustLII, June 1997.

1.1.1 The DataLex inferencing software - YSH

The DatalLex inferencing software (inference engine) is also known
as YSH (pronounced ‘why-shell’), and is referred to as such in

6 DATALEX DEVELOPER’S MANUAL

previous documentation. It uses a quasi-natural language
knowledge representation. Knowledge may be represented as
backward or forward chaining rules, or procedures, or any
combinations of these, for the purposes of rule-based inferencing.
Knowledge may also be represented as clusters of fact descriptions,
‘cases’, for the purposes of example-based inferencing using
nearest-neighbour discriminant analysis. Facts are shared by the
rule-based and example-based inferencing mechanisms, and by the
document generator. YSH was developed with the creation of
applications to law in mind, but is equally applicable to the creation
of other automated interview style applications.

Andrew Mowbray is the author of the Datalex inferencing
software / YSH. The version covered in this Manual is
DataLex/YSH Ver. 1.2.1.

1.1.2 The DataLex knowledge-base development tools

Development of DatalLex applications primarily takes place within
the DataLex section of the AustLIl Communities environment.? The
development environment is that of a closed wiki which preserves
the correct formatting of the knowledge-base, and provides a
number of tools for checking and correcting syntax. Automated
hypertext links between knowledge-base texts and the source texts
on AustLIl and other Llls also make it easier to check rules etc
against the sources on which they are based, during development.
There is also a development environment located outside AustLII
Communities which is used for teaching and development of test
knowledge-bases.? Their use is covered later in this Chapter.

1.1.3 The DataLex user interface

The user interface to the DataLex inferencing software provides an
easy-to-use environment in which end-users conduct a
question-and-answer dialogue with the application in order to
provide information (‘facts’) to it in order for the system to draw
conclusions, and to conclude a user session by producing a report
(and in some cases a document). The interface allows users to ask
Why questions are being asked and How conclusions have been
reaching, as well as to Forget facts previously provided, and to test
hypothetical facts through a What-if facility. The user interface also
uses AustLIl's automated hypertext markup and free text retrieval
facilities to provide automated hypertext links from dialogues,
conclusions and reports to the relevant legal sources on AustLII or
on other LIIs. This integration between the inferencing components
and the legal sources located on Llls is one of the principal
distinctive features of the DataLex approach.

The User Manual for the current* DataLex user interface is in

2 DataLex section of the AustLII
Communities <http://austlii.
community/wiki/DatalLex/>

% DataLex knowledge-base
Development Tools <http:
//www.datalex.org/dev/import/>

* A previous user manual, referred to in
some documentation, was A Mowbray,
G Greenleaf, G King & S Cant Wysh
User’s Manual - 1997.

http://austlii.community/wiki/DataLex/
http://austlii.community/wiki/DataLex/
http://www.datalex.org/dev/import/
http://www.datalex.org/dev/import/

DATALEX LEGAL KNOWLEDGE-BASE SYSTEMS 7

Chapter 8 of this Manual. The purposes of features of the software,
as described in this Developer’s Manual, are sometimes best

understood by reference to the User’s Manual. The current interface® 3 The earliest web interface to YSH

(S Cant and G King, 1997) was called

Wysh (‘web-ysh’), a Common Gateway

Philip Chung, Andrew Mowbray and AustLII consultants. Interface (CGI) to YSH written in Perl
and C. It associated each user session
with a session identifier and connects

1.2 Conventions used in this Manual subsequent requests to the appropriate
session, or process, by means of UNIX

. sockets. It is referred to in previous
The following conventions are used in this Manual to explain documentation.

to the DataLex inferencing software (2019) has been developed by

commands or file names:

string Words or symbols in bold indicate the actual words or
symbols used;

string Words or symbols in italics indicate that their content is
variable;

A vertical bar is used to divide a range of options - don’t type
it.

1.3 Theoretical foundations of the DataLex approach

There are a number of articles explaining and justifying the approach
taken by the DataLex project. The main articles, and bibliography, are
as follows:

* A Mowbray, P Chung and G Greenleaf, ‘Utilising Al in the Legal
Assistance Sector — Testing a Role for Legal Information Institutes’
(29 April 2019), presented at LegalAIIA 2019, co-located with
ICAIL 2019, 17 June 2019, Montréal, Québec, Canada
<https://ssrn.com/abstract=3379441>

¢ G Greenleaf, A Mowbray, and P Chung, ‘Building Sustainable Free
Legal Advisory Systems: Experiences from the History of Al &
Law’ (2018) 34(1) Computer Law & Security Review 314 <https://
ssrn.com/abstract=3021452>

* G Greenleaf, A Mowbray, and P Chung, ‘The Datalex Project:
History and Bibliography’ (3 January 2018). [2018] UNSWLRS 4
or <https://ssrn.com/abstract=3095897>

* G Greenleaf, A Mowbray, and P van Dijk, ‘Representing and using
legal knowledge in integrated decision support systems - DataLex
WorkStations” Artificial Intelligence & Law, Vol 3, 1995, Kluwer,
97-142 <https:/ /papers.ssrn.com/abstract_id=2183481>

1.4 Creating a mnew knowledge-base in the DataLex
Community

The DataLex Community (part of the AustLIl Communities) is a
collaborative closed wiki-like platform used in the DataLex system

https://ssrn.com/abstract=3379441
https://ssrn.com/abstract=3021452
https://ssrn.com/abstract=3021452
http://www.austlii.edu.au/au/journals/UNSWLRS/2018/4.html
https://ssrn.com/abstract=3095897
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2183481

8 DATALEX DEVELOPER’S MANUAL

for creating and editing knowledge-bases or rule-bases.

Log into the DataLex Community site
<http://austlii.community/wiki/DatalLex/> by clicking on the
‘Log in” button on the top right hand corner.

Figure 1.2: DataLex Community login

process.
DATALEX
Once the login process is verified, an extra row of buttons for
editing and creating new rule-bases will appear on the page.
& Edit Attach ™ Like 4 New $ More Figure 1.3: Editing existing rule-base in

DataLex Community.

Click on “Edit’ to edit existing rule-bases.

To start a new rule-base (or topic), click on the ‘New’ button. Do
so from the DatalLex page, or it will be a sub-page from wherever you
start. The following window will appear:

Figure 1.4: Creating new rule-base (or
Create a new topic in the DatalLex web (> topic) in DataLex Community.

Title:
L ‘ PrivacyKB|

Free form topic title text. The actual topic name will be derived from the
title automatically.

Template:

Default © DataLexKBTemplate

! Select which template to use while creating this topic. N

« Submit | X Cancel

Enter the ‘Title” of the rule-base to be constructed. The example
here is ‘PrivacyKB’ for a privacy law knowledge-base. (For easy
identifiability, it is useful to give knowledge-bases the suffix ‘KB’.) In
the “Template” section, select ‘DataLexKBTemplate” (not ‘Default’).
Then, click on ‘Submit’.

In the editing screen for the rule-base (with heading ‘Title of
knowledge-base’), start editing your rule-base by deleting ‘ADD

http://austlii.community/wiki/DataLex/

DATALEX LEGAL KNOWLEDGE-BASE SYSTEMS 9

RULES HERE'. One way to start a rule base is to paste in a legislative
section, and start editing it to create rules.

To find your rule-base after you have logged back in, search for the
first few letters of the name of your rule-base (eg search for ‘FOI” to
find FOIDocumentOfAnAgencyKB).

1.5 Creating a new knowledge-base using the Development
Tools

If you do not yet have an account in AustLIl Communities, go to
<http://www.datalex.org/dev/import/> (AustLIl’s DatalLex
Knowledge-base Development Tools page — ‘KB Tools page”). No login is
necessary. This page enables creation and test-runs of small
applications using the DataLex software. However, it does not allow
test apps to be saved.

Figure 1.5: DataLex knowledge-base
DataLex Knowledge-base Development Tools development tools: Importing and

Tools for DataLex knowledge-base development and training. Edltmg rules.

Note: Applications created using the DataLex software may only be used for educational and testing purposes. They may not be used for
any other purposes, whether commercial or non-commercial.

Details of AustLIl’s DataLex project, including instructional materials on use of the software, are at i i iki/DataLex/.

Comments on the DataLex software and these development tools are welcome, and should be sent to datalex@austlii.edu.au. We are very
i to see test applicati using the software.

o Import legislative section (available on AustLII)

Act Name (incl Short title and Year eg Freedom of Information Act 1982)

Jurisdiction

Select a jurisdiction j

Section Number

Import & Replace Import & Append

@ Edit DataLex knowledge-base

Knowledge-base

There are two ways to start writing an app:

(i) Simply start writing in the ‘Edit DataLex knowledge-base” editing
screen, following the instructions in this Manual.

(ii) If you know what section of an Australian Act you would like to
start with, go to the ‘Import legislative section (available on
AustLIl)” and enter the Act name, jurisdiction and section, then
start editing as in (i) above.

Select the ‘Run Consultation” button when you are ready to test
your KB. Please note:

http://www.datalex.org/dev/import/
http://www.austlii.edu.au/

10 DATALEX DEVELOPER’S MANUAL

Check Fact Cross References Check Fact Translations
Clear Knowledge-base

e After running your app (successfully or unsuccessfully) you can
use your browser to come back to the KB Tools page to make
further edits to your KB.

¢ If your app does not run as intended, use the ‘Check Fact Cross
References” and ‘Check Fact Translations” buttons to run
diagnostics (see 2.5 below) to identify problems. Edit and run

again.

¢ If you have spent any significant time developing a test KB, you
might want to save a copy in a word processor or other file, in case
the browser malfunctions, or if you want to use the KB again after
you have quit the browser.

Refinements:

¢ To add another section of an Act from AustLII to an existing KB,
use the ‘Import and Append’ button after specifying the additional
section.

¢ To over-write and erase an existing KB with a new section from
AustLII, use the ‘Import and Replace’ button.

¢ To clear an existing KB and start again, use ‘Clear knowledge-base’.

1.6 Updates to this Manual

This PDF version of the Manual will be updated periodically. In
between PDF editions, incremental updates may be made to the wiki
version of the Manual located on AustLIl Communities at <http:
//austlii.community/wiki/Datalex/DatalLexDeveloperSManual>.

Figure 1.6: DataLex knowledge-
base development tools: Running
Consultation and Checking rule-base.

http://austlii.community/wiki/DataLex/DataLexDeveloperSManual
http://austlii.community/wiki/DataLex/DataLexDeveloperSManual

2
I Rule-based inferencing (I): Knowledge-bases and rules

2.1 Introduction

The DataLex inferencing software is an Internet-based expert system
shell for the development of inferencing systems (sometimes called
‘expert systems’) in the legal domain. It may be used to develop
systems incorporating rule-based inferencing (discussed in this
Chapter and the two following chapters), example or case-based
inferencing (Chapter 7), and automated document assembly
(Chapter 6). The User Interface Manual is in Chapter 8.

2.1.1 Levels of complexity with DataLex

DataLex is very simple to use to create small practice expert systems,
at least for most types of statute-based applications. This is because
all you have to do, to get a small system up and running, is to
paraphrase a section or two of an Act into a somewhat strict logical
form, using logical connectors such as IF, THEN, AND and OR. The
result is a knowledge-base, expressed in DataLex’s ‘English like’
knowledge representation language. The DatalLex inference engine
then does the rest, running your knowledge-base to generate a
dialogue with the user, asking questions and giving answers. You
don’t write any of the questions or answers — DatalLex generates
them automatically from your knowledge-base.

However, while DataLex can be used easily by relying only on a The easiest way to understand how a
DataLex knowledge-base is written is

to study the examples given in this and
and complex range of features which can be used as you proceed to the following Chapters, and then to
use this Manual to explain features that
you don’t understand fully.

small number of its features, the DataLex engine has a very powerful

develop more sophisticated applications.

2.1.2 Main features

The main features of Datal.ex are:

* a ’quasi-natural-language’ or English-like syntax, which
encourages isomorphism (similarity between the structure of a
knowledge-base and source legal documents), transparency
(purpose of rules is relatively obvious) and rapid prototyping
(easy to get small systems running);

12 DATALEX DEVELOPER’S MANUAL

¢ rules of any degree of complexity may be written, using
propositional logic;

¢ backward and forward chaining rule-based inferencing;

¢ conventional procedural code including mathematical
calculations;

¢ aform of reasoning by analogy, or example-based reasoning; and
¢ adocument generation facility.

DataLex is therefore a fairly versatile tool with which a variety of
inferencing applications may be created.

2.1.3 User commands and the DataLex User Interface Manual

The DataLex User Interface Manual, in Chapter 8 of this Manual,
explains the interface to DatalLex applications when they are
running, from a user perspective. It should be read either before or
in conjunction with this Chapter.

2.1.4 Developing a DataLex application — Where is the developer’s
interface?

See Chapter 1, sections 1.4 and 1.5 for the two ways to do this.

The developer’s interface for DataLex applications is primarily
within the DataLex section of the AustLII Communities environment
<http://austlii.community/wiki/DatalLex/>. There is also a
development environment located outside AustLIl Communities
which is wused for teaching and development of test
knowledge-bases, the ‘DataLex Knowledge-base Development
Tools” <http://www.datalex.org/dev/import/>.

2.2 Knowledge-bases and rules

A knowledge-base is a set of declarations, so called because they
‘declare’ items of knowledge about a subject area. This type of
programming is therefore called ’declarative’ programming, in
contrast to ‘procedural’ programming, which is of the form “first do
this step; then do this step". The author of a DataLex application
therefore creates a ‘’knowledge-base’ rather than a "program’.

2.2.1 Knowledge-bases as sets of rules

The most important category of declarations in DataLex is rules (so
knowledge-bases are often called rule-bases). A knowledge-base, at
its simplest, is therefore a set of rules. When the rule-base is 'run’ by
DataLex it attempts to find the truth of a specified fact.

http://austlii.community/wiki/DataLex/
http://www.datalex.org/dev/import/

RULE-BASED INFERENCING (I): KNOWLEDGE-BASES AND RULES 13

It does this by going to a rule which has that fact as its conclusion
and examining each of the premises of that rule to determine
whether the conclusion of the rule is true. In evaluating the premises
of a rule DataLex uses any other rules which have any of the
premises as their conclusion. Datalex repeats this process along
each branch of reasoning until it reaches a premise for which there is
no rule to derive a conclusion. At this point, DatalLex interrogates
the user about the truth of the premise. It does not generally matter,
therefore, in which order the rules occur. Rather, DatalLex searches
the knowledge-base for relevant rules in relation to each fact or
premise which it is evaluating.

2.2.2 Form of a simple rule

In its simplest form, a rule contains four elements:

(i) the keyword ‘RULFE’, indicating the start of a new rule (in the
absence of any specification otherwise, the rule will be both
backward chaining and forward chaining);

(ii) the name of the rule (usually just the name of the Act and section
that it paraphrases); The name of a rule should differ from that of
any other rule in the rule-base;

(iii) the keyword ‘PROVIDES’, indicating the start of the body of the
rule; and

(iv) the statement(s) which make up the inferencing content of the
rule (one or more statements). Statements consist of declarations.
One of the simplest forms of a statement is 'IF condition THEN
conclusion’.

The simplest syntax for a rule is therefore as follows:

RULE name PROVIDES statements

The example below shows a rule with one moderately complex set
of statements:

RULE Freedom of Information Act 1982 (Cth) s11 PROVIDES
a person has a legally enforceable right under sll to obtain
access to a document ONLY IF
sll(a) applies OR
sll(b) applies

2.3 Content of rules - keywords and descriptors

Knowledge-base rules consist of keywords and descriptors. Keywords
are used to join together, in a logical form, a number of descriptors,
which are simply terms or phrases used to describe some object, event
etc.

14 DATALEX DEVELOPER’S MANUAL

2.3.1 Keywords

Keywords give rules the logical structure used by DataLex to draw
inferences. They are written in FULL UPPER CASE so DataLex can
distinguish them from their equivalents in ordinary words (which
may occur in descriptors).

Some examples of important keywords, or sets of keywords are:
ONLY IF; IF THEN; IF ... THEN ELSE; IS; AND; OR; PLUS;
MINUS ; PERSON; THING.

These and other keywords have functions in a DatalLex
knowledge-base which is very similar to their normal linguistic
function as words. This correspondence is a large part of what gives
DataLex a ‘quasi natural language’ or "English like’ syntax.

There is a list of keywords which may be used with DataLex at the
end of Chapter 4.

2.3.2 Descriptors

Descriptors may be any sequence of words or symbols but must not
contain keywords (although they can contain the lower case versions
of them). Descriptors are generally written in lower case, with normal
capitalisation. See Chapter 3 for details of how descriptors should be
written in order to work best in DataLex.

In the example below, some descriptors used are ‘a person has a
legally enforceable right under s11 to obtain access to a document’,
‘s11(a) applies’ and “the document is not an exempt document’. These
are all attributes.

There are a number of varieties of descriptors, of which the most
important are (i) constants, (ii) facts or attributes, (iii) named subjects
(a special type of attribute) and (iv) rule names. Each is discussed
in detail in the following chapter. A type of attribute used only in
documents (see Chapter 6) is called ‘text’.

First, however, a simple example of a rule, and how to make it run,
is given.

2.4 Example of a rule — FOI Act s11

2.4.1 The section

The Freedom of Information Act 1982 (Cth) s11 reads:

11. Subject to this Act, every person has a legally enforceable right
to obtain access in accordance with this Act to —

(a) a document of an agency, other than an exempt document; or

(b) an official document of a Minister, other than an exempt
document.

A rule-base of 3 rules consisting solely of this section could read
as follows. The rules have been (over-)simplified, for demonstration
purposes, by ignoring the words ‘subject to this Act’ in s11.

DataLex is very case-sensitive. It
expects keywords to be in FULL
UPPER CASE.

RULE-BASED INFERENCING (I): KNOWLEDGE-BASES AND RULES 15

2.4.2 A rule-base of 3 rules

RULE Freedom of Information Act 1982 (Cth) s11 PROVIDES
a person has a legally enforceable right under sll to obtain
access to a document ONLY IF

sll(a) applies OR

sll(b) applies

RULE Freedom of Information Act 1982 (Cth) sll(a) PROVIDES
sll(a) applies ONLY IF

the document is a document of an agency AND

the document is not an exempt document

RULE Freedom of Information Act 1982 (Cth) s11(b) PROVIDES
sll(b) applies ONLY IF
the document is an official document of a Minister AND
the document is not an exempt document

2.5 Running and de-bugging a DataLex application

Text, such as that above, is all that is needed for a valid knowledge-
base. The knowledge-base can be invoked as a DataLex session by
selecting the ‘Run Consultation” button.

If a knowledge-base does not behave as intended, go back to the
editing page, edit the rule, and run it again. The main purpose of the
type/paste window on the manual start page is to allow the
developer to test minor changes to rules without having to create a
new web page each time in order to do so.

2.5.1 Debugging

In addition to the ‘Run Consultation’ button, there are two additional
buttons which allow you to check for some types of errors in your
knowledge-base, either before you try to run it, or after you so, and
it does not perform quite as expected. They are ‘Check Fact Cross
References’ and ‘Check Fact Translations’.

There is also another debugging tool that can be used while the
application is running, Verbose Mode (see 8.10).

2.5.2 Check Fact Cross References

Use of similarly named but not identically named attributes is one
of the main causes of errors in YSH knowledge-bases, particularly
where rules which are supposed to chain do not do so. The * Check
Fact Cross References’ button allows you to check for such errors.
The ‘Check Fact Cross References’” button causes each

fact/attribute to be printed (in alphabetical order - except where it Use of similar but not identical
attributes is one of the main causes

of errors in DataLex. The ‘Check Fact
(*) and rules which use (-) the attribute. Named subjects are also Cross References’ button allows you to
listed check for such errors.

begins with an hypertext link) showing the names of rules which set

16 DATALEX DEVELOPER’S MANUAL

2.5.3 Check Fact Translations

Use of the ‘Check Fact Translations” button enables you to check that
your attributes are expressed correctly.

For each attribute in the knowledge-base, in the order in which
they occur, it shows: (i) prompts (questions); (ii) a translation in
positive form; and (iii) a translation in negative form. For example,
the interrogative, positive and negative translations of the attribute
‘s11(a) applies’ are as follows:

-Does sll(a) apply?
-S11(a) applies.
-S11(a) does not apply.

2.6 Some style guidelines for DataLex applications

Although DatalLex is designed to be fairly flexible, it is worth bearing
in mind the following guide-lines for developing rule-bases:

2.6.1 Simplicity

Try to aim for simplicity wherever possible. Complicated kludges
and workarounds detract from the readability of the code and can
have unexpected repercussions, particularly when the
knowledge-base is later expanded or changed. Don’t use facilities
simply because they are available.

2.6.2 Isomorphism

Where the knowledge-base represents rules from a legal source
document such as a piece of legislation, try to directly translate the
statutory rules into DataLex rules, observing as far as possible the
order and grouping of the legislative rules, and adding as little
interpretation as possible. Keep other rules, such as interpretation or
‘common sense’ rules which do not derive directly from the
legislation, in a separate part of your rule-base.

2.6.3 Small rules

Avoid large and complicated rules. Small rules are easier to
understand and will assist with automatic explanations.

2.6.4 Attribute Names

Include the legal basis for attributes in their descriptors, as in the
layout is in "material form” as defined in s.5. This will make for more
meaningful explanations. Avoid wusing unnecessarily long
descriptors. These make for convoluted questions and explanations.
Do not use the translation and prompt options unnecessarily. Try

Use the ‘Check Fact Translations’
button to check that your attributes are
expressed correctly.

RULE-BASED INFERENCING (I): KNOWLEDGE-BASES AND RULES 17

changing the attribute name to get DatalLex to handle it properly,
first. Avoid use of embedded attributes.

2.6.5 Rule Types

Use only the default rule type unless you have a good reason for
doing otherwise. Forward chaining rules and daemons should
generally only be used to alter the operation of rules encompassing
knowledge rather than to embody knowledge themselves.

2.6.6 Declarative Representation

Do not represent knowledge procedurally using DETERMINE and
CALL statements except where unavoidable. Avoid being concerned
about the actual operation of knowledge-rich rules and instead
concentrate on describing the item of knowledge with which you are
dealing.

2.6.7 Comments

Avoid relying on comments to understand your code. The code
should largely be transparent. However, you can use comments to
indicate what legislative provisions you have omitted from your
DataLex representation.

3
I Rule-based inferencing (1I): Descriptors, keywords and

expressions

Rules in knowledge-bases consist of keywords and descriptors.
Keywords are used to join together, in a logical form, a number of
descriptors, which are simply terms or phrases used to describe some
object, event etc. Descriptors may be any sequence of words or
symbols but must not contain keywords (although they can contain
the lower case versions of them). Descriptors are generally written in
lower case, with normal capitalisation. The most important types of
descriptors, discussed in this Chapter, are (i) constants, (ii) facts or
attributes, (iii) named subjects (a special type of attribute) and (iv)

rule names.

3.1 Attributes (or ‘Facts’)

An attribute is any descriptor (a sequence of words or symbols
which does not contain a keyword) which is not a constant (see
below). The purpose of attributes is to hold values which are
determined during the evaluation of a knowledge-base. Every
sequence of text in a knowledge-base which is not a keyword or a
constant must therefore make sense as something which has a value.
(Chapter 6 explains an exception where text follows the keyword
TEXT)

Attributes are also referred to as ‘facts’ in the Datalex error Attributes and other descriptors have a
maximum length of 256 characters.

messages.

3.1.1 Consistent naming of attributes

Consistent naming of attributes, including consistency in Lack of consistency is the principal
cause of DataLex applications running
other than as expected. Use the ‘Check
DataLex does not forgive inconsistency. Fact Cross References’ button to check
for possible inconsistencies in naming
of attributes.
3.1.2 Boolean (true/false) attributes and their names DataLex cannot tolerate
inconsistencies in either capitalisation
or punctuation.

capitalisation and punctuation, is vital to DatalLex’s operation.

The default attribute type is boolean (that is, true/false). When
naming boolean attributes, you should choose a name starting with a

20 DATALEX DEVELOPER’S MANUAL

subject, then a verb (expressed in the positive or negative) and,
optionally, an object.
For example, each of the following is a boolean attribute, correctly

expressed:
Subject Verb Object Table 3.1: Examples of recommended
the claimant satisfies s23(1) subject/verb/object form
the circuit layout isin material form
section 9 applies
section 9 does not apply to bills of exchange

The purpose of the recommended subject/verb/object form is
explained below in relation to the generation of questions and
explanations (see 3.3 Generating questions and explanations).

3.1.3 Non-boolean attributes - types

DataLex recognises the following attribute types:

Table 3.2: Attribute types recognised by

Type Values Example
yp P DataLex

BOOLEAN T/F/U (default type) See above
INTEGER whole numbers only the number of applicants

REAL fractions accepted the number of degrees tolerance
STRING a string of text the alleged defamatory statement
SEX MorF the sex of the claimant

DOLLAR dollars and cents the value of the estat

DATE a date the date of the intestate’s death

Non-boolean attributes are introduced in one of two ways: (i)
automatically by use; or (ii) formally by a declaration.

3.1.4 Automatic type recognition of non-boolean attributes

If the first use of an attribute in a knowledge-base requires DataLex
to recognise it as something other than boolean, that type is
automatically associated with it. From then on, you must use the
attribute consistently or an error message will result. In other words,
Datalex is able to make an ‘intelligent guess’ about the type of
non-boolean attribute that is intended, based on other aspects of the
expression it is first found in. For example, in the expression IF the
date of arrival IS GREATER THAN 1 May 1977’, DataLex is able to
work out that the attribute 'the date of arrival’ is probably a
non-boolean attribute of type DATE, because another date (1 May
1977) appears in conjunction with a relational operator.

3.1.5 Formal attribute type declarations for non-boolean attributes

While Datalex is generally accurate in recognising non-boolean
attributes, it sometimes makes an error. This may be avoided or
corrected by an explicit declaration of the type of the attribute.

RULE-BASED INFERENCING (I1): DESCRIPTORS, KEYWORDS AND EXPRESSIONS 21

The syntax for formal declarations is:

TYPE attribute-name

optionally followed by a list of translations and wvalid ranges
(discussed below).

For example, to declare attributes to be of the types ‘DATE’ and
‘DOLLAR":

DATE the date of the intestate’s death
DOLLAR the value of the estate

Because of these declarations, or because of automatic recognition,
DataLex would only accept responses from a user that were of the
specified types.

Attribute declarations should appear outside of rules and
procedures. Otherwise, they can appear anywhere in a
knowledge-base, provided they appear somewhere in the
knowledge-base prior to where the attribute is first used. It is often
convenient to group them all at the start.

3.1.6 Range limitation of attribute values [advanced]

If there was a need to further limit the range of acceptable responses
from the user (eg to dates only within a specified period, or to
amounts less than a certain maximum), then a RANGE statement is
available

The syntax is:

RANGE expression [TO expression]

The statement should appear immediately after a fact declaration.
It may be used multiple times if there are many valid ranges. Where
the optional TO expression is used it indicates that the value for the
fact should be between the result of the first expression and the result
of the second expression. However, in this case the expressions must
produce numeric results.

Some examples of RANGE statements are:

STRING the name of the intelligence agency
RANGE "ASIO"
RANGE "ASIS"
RANGE "DSD"

DOLLAR the value of the household chattels
RANGE @ TO the value of the estate

3.1.7 Attribute names for non-boolean attributes

You must choose an attribute name which can be followed by an ‘is’
then a value so that Datalex can correctly provide prompts and
translations. For example, the non-boolean attribute declarations

22 DATALEX DEVELOPER’S MANUAL

given above will correctly result in the following prompts and (when

answered) translations:

DATE the date of the intestate’s death
What is the date of the intestate’s death ?
The date of the intestate’s death is 1st January 1991.

DOLLAR the value of the estate
What is the value of the estate ?
The value of the estate is $250,000.

3.2 Constants

Whereas attributes have a variable value which is determined
during the evaluation of a knowledge-base, a constant has a fixed
value. Datalex recognises any of the following descriptors as
constants: an integer (eg 1000), a real number (eg 7.15), a dollar
amount (eg $950 or $950.00), the words ‘true’ and ‘false’ (boolean
constant) and the words ‘male’ and ‘female’ (sex constant), a date (in
any sensible format), and any descriptor placed in double quotes (a
string constant).

DataLex is generally able to automatically recognise constants,
and to give them the correct type. If DataLex does not recognise a
descriptor as being in any of these categories of constant, it assumes
that the descriptor is an attribute.

Constants are used primarily in expressions which use binary
operators (eg PLUS; EQUALS; IS LESS THAN; IN) and in
assignment statements (see below).

3.3 Generating questions and explanations

One of Datalex’s main features is its capacity to automatically
generate questions (prompts) by re-parsing the attribute that it is
attempting to find a value for, into an interrogative form (ie by
re-parsing the part of the rule it is at present evaluating). Similarly, it
can provide explanations by re-parsing rules that it has previously
evaluated, substituting the values that it has established for those
rules.

3.3.1 Automatic generation of questions (prompts) and
explanations

Provided that boolean attribute names appear in the
subject/verb/object form explained above (see 3.1.2 Boolean
(true/false) attributes and their names), or non-boolean attribute
names appear in the 'is’ form explained above (see 3.1.3 Attribute
names for non-boolean attributes), DataLex will normally be able to
affect sensible translations automatically, for use during problem

DataLex cannot tolerate inconsistencies
in either cap