

University of New South Wales Law Research Series

AUSTLII'S DATALEX DEVELOPER'S MANUAL
(1ST EDITION, JUNE 2019)

ANDREW MOWBRAY, GRAHAM GREENLEAF AND PHILIP
CHUNG

[2019] UNSWLRS 65

UNSW Law
UNSW Sydney NSW 2052 Australia

E: unswlrs@unsw.edu.au
W: http://www.law.unsw.edu.au/research/faculty-publications
AustLII: http://www.austlii.edu.au/au/journals/UNSWLRS/
SSRN: http://www.ssrn.com/link/UNSW-LEG.html

mailto:unswlrs@unsw.edu.au
http://www.law.unsw.edu.au/research/faculty-publications
http://www.austlii.edu.au/au/journals/UNSWLRS/
http://www.ssrn.com/link/UNSW-LEG.html

Andrew Mowbray
AustLII
University of Technology Sydney
andrew@austlii.edu.au

Graham Greenleaf
AustLII
UNSW Sydney
graham@austlii.edu.au

Philip Chung
AustLII
UNSW Sydney
philip@austlii.edu.au

AustLII’s
DataLex Developer’s
Manual
Australasian Legal Information Institute (AustLII)

First Edition
JUNE 2019

AustLII’s
DataLex Developer’s
Manual
Australasian Legal Information Institute (AustLII)

First Edition
JUNE 2019

Copyright © 2019 Andrew Mowbray, Graham Greenleaf and Philip Chung

Andrew Mowbray is Professor Law and Information Technology, University of Technology
Sydney and Co-Director, AustLII.

Graham Greenleaf AM is Professor of Law & Information Systems, UNSW Sydney and Senior
Researcher, AustLII.

Philip Chung is Associate Professor of Law, UNSW Sydney and Executive Director, AustLII.

AustLII, Sydney, Australia

http://www.austlii.edu.au/

AustLII is a joint facility of UTS and UNSW Faculties of Law.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).

First Edition, June 2019

http://www.austlii.edu.au/

Contents

1 DataLex legal knowledge-base systems 5
1.1 Components of AustLII’s DataLex legal

knowledge-base systems 5
1.2 Conventions used in this Manual 7
1.3 Theoretical foundations of the DataLex approach 7
1.4 Creating a new knowledge-base in the DataLex

Community . 7
1.5 Creating a new knowledge-base using the

Development Tools . 9
1.6 Updates to this Manual 10

2 Rule-based inferencing (I): Knowledge-bases and rules 11
2.1 Introduction . 11
2.2 Knowledge-bases and rules 12
2.3 Content of rules - keywords and descriptors 13
2.4 Example of a rule – FOI Act s11 14
2.5 Running and de-bugging a DataLex application 15
2.6 Some style guidelines for DataLex applications 16

3 Rule-based inferencing (II): Descriptors, keywords and
expressions 19
3.1 Attributes (or ‘Facts’) . 19
3.2 Constants . 22
3.3 Generating questions and explanations 22
3.4 Named subjects - names of people and things 25
3.5 Variable attributes [advanced] 27
3.6 Expressions - the use of operators 28

4 Rule-based inferencing (III): Rule types, statements and
evaluation order 31
4.1 Order of evaluation of rules, and within rules, in

inferencing . 31
4.2 Goals - LISTED rules and GOAL rules 32
4.3 Order of evaluation of rules 32
4.4 Types of rules . 33
4.5 Statements . 34
4.6 Appendix – List of Main Keywords (all types) used by

DataLex . 39

4 MOWBRAY, GREENLEAF & CHUNG

5 Integration of DataLex knowledge-bases with AustLII and
other LIIs 41
5.1 Overview - Integration of DataLex knowledge-bases

with their sources . 41
5.2 Automatic links to AustLII legislation 41
5.3 Automatic links to case law 42
5.4 Explicit links in a knowledge-base (the LINK ... TO ...

keywords) . 43
5.5 Stored searches from DataLex knowledge-bases 43
5.6 ‘Co-operative inferencing’ – knowledge-bases in

multiple locations . 43

6 Document assembly using DataLex 45
6.1 DOCUMENT rules . 45
6.2 Text generation statement types - PARAGRAPH and

TEXT . 46
6.3 ‘Personalising’ documents - embedded attributes 47
6.4 Alternative clauses in a document 48
6.5 Generating successive paragraphs of a document - use

of CALL statements . 49
6.6 Numbering paragraphs 49
6.7 Integration of inferencing and document generation . . 50
6.8 Use of other DataLex features with document assembly 50
6.9 Example - a will generator 51

7 Case-based (example-based) inferencing using DataLex 55
7.1 Example-based reasoning – overview 55
7.2 Relationship between examples and rules in DataLex’s

inferencing . 55
7.3 Knowledge representation – EXAMPLEs 56
7.4 An example of a case representation by EXAMPLEs . . 57
7.5 Reports generated by DataLex EXAMPLE reasoning . . 57
7.6 Principles behind the case-based inferencing component 58
7.7 Steps in developing an EXAMPLE set 59

8 DataLex user interface manual 65
8.1 Relationship to the previous chapters 65
8.2 Starting a consultation 65
8.3 Choice of goals . 66
8.4 Answering questions . 66
8.5 Showing facts (What?) 67
8.6 Forgetting facts (Forget) 67
8.7 Obtaining explanations for conclusions (How?) 68
8.8 Reports . 68
8.9 Links to sources . 69
8.10 Viewing consultations in verbose mode 69

1
DataLex legal knowledge-base systems

1.1 Components of AustLII’s DataLex legal knowledge-base
systems

AustLII’s DataLex inferencing software allows the development of
Internet-based applications combining knowledge-based
inferencing, a limited form of example-based inferencing, and
automated document assembly. Applications are in the form of a
plain-text knowledge-base (KB), which is written in a quasi-natural
language knowledge representation.

The DataLex legal knowledge-based system has the following
principal components:

Figure 1.1: Components of the DataLex
system.

This Manual describes the development and use of AustLII’s
DataLex legal knowledge-base systems as at June 2019.1 1 Parts are derived from A Mowbray,

G Greenleaf, G King & S Cant Wysh
Developer’s Manuals, AustLII, June 1997.

1.1.1 The DataLex inferencing software - YSH

The DataLex inferencing software (inference engine) is also known
as YSH (pronounced ‘why-shell’), and is referred to as such in

6 DATALEX DEVELOPER ’S MANUAL

previous documentation. It uses a quasi-natural language
knowledge representation. Knowledge may be represented as
backward or forward chaining rules, or procedures, or any
combinations of these, for the purposes of rule-based inferencing.
Knowledge may also be represented as clusters of fact descriptions,
‘cases’, for the purposes of example-based inferencing using
nearest-neighbour discriminant analysis. Facts are shared by the
rule-based and example-based inferencing mechanisms, and by the
document generator. YSH was developed with the creation of
applications to law in mind, but is equally applicable to the creation
of other automated interview style applications.

Andrew Mowbray is the author of the DataLex inferencing
software / YSH. The version covered in this Manual is
DataLex/YSH Ver. 1.2.1.

1.1.2 The DataLex knowledge-base development tools

Development of DataLex applications primarily takes place within
the DataLex section of the AustLII Communities environment.2 The 2 DataLex section of the AustLII

Communities <http://austlii.
community/wiki/DataLex/>

development environment is that of a closed wiki which preserves
the correct formatting of the knowledge-base, and provides a
number of tools for checking and correcting syntax. Automated
hypertext links between knowledge-base texts and the source texts
on AustLII and other LIIs also make it easier to check rules etc
against the sources on which they are based, during development.
There is also a development environment located outside AustLII
Communities which is used for teaching and development of test
knowledge-bases.3 Their use is covered later in this Chapter. 3 DataLex knowledge-base

Development Tools <http:
//www.datalex.org/dev/import/>

1.1.3 The DataLex user interface

The user interface to the DataLex inferencing software provides an
easy-to-use environment in which end-users conduct a
question-and-answer dialogue with the application in order to
provide information (‘facts’) to it in order for the system to draw
conclusions, and to conclude a user session by producing a report
(and in some cases a document). The interface allows users to ask
Why questions are being asked and How conclusions have been
reaching, as well as to Forget facts previously provided, and to test
hypothetical facts through a What-if facility. The user interface also
uses AustLII’s automated hypertext markup and free text retrieval
facilities to provide automated hypertext links from dialogues,
conclusions and reports to the relevant legal sources on AustLII or
on other LIIs. This integration between the inferencing components
and the legal sources located on LIIs is one of the principal
distinctive features of the DataLex approach.

The User Manual for the current4 DataLex user interface is in 4 A previous user manual, referred to in
some documentation, was A Mowbray,
G Greenleaf, G King & S Cant Wysh
User’s Manual - 1997.

http://austlii.community/wiki/DataLex/
http://austlii.community/wiki/DataLex/
http://www.datalex.org/dev/import/
http://www.datalex.org/dev/import/

DATALEX LEGAL KNOWLEDGE-BASE SYSTEMS 7

Chapter 8 of this Manual. The purposes of features of the software,
as described in this Developer’s Manual, are sometimes best
understood by reference to the User’s Manual. The current interface5 5 The earliest web interface to YSH

(S Cant and G King, 1997) was called
Wysh (‘web-ysh’), a Common Gateway
Interface (CGI) to YSH written in Perl
and C. It associated each user session
with a session identifier and connects
subsequent requests to the appropriate
session, or process, by means of UNIX
sockets. It is referred to in previous
documentation.

to the DataLex inferencing software (2019) has been developed by
Philip Chung, Andrew Mowbray and AustLII consultants.

1.2 Conventions used in this Manual

The following conventions are used in this Manual to explain
commands or file names:

string Words or symbols in bold indicate the actual words or
symbols used;

string Words or symbols in italics indicate that their content is
variable;

| A vertical bar is used to divide a range of options - don’t type
it.

1.3 Theoretical foundations of the DataLex approach

There are a number of articles explaining and justifying the approach
taken by the DataLex project. The main articles, and bibliography, are
as follows:

• A Mowbray, P Chung and G Greenleaf, ‘Utilising AI in the Legal
Assistance Sector – Testing a Role for Legal Information Institutes’
(29 April 2019), presented at LegalAIIA 2019, co-located with
ICAIL 2019, 17 June 2019, Montréal, Québec, Canada
<https://ssrn.com/abstract=3379441>

• G Greenleaf, A Mowbray, and P Chung, ‘Building Sustainable Free
Legal Advisory Systems: Experiences from the History of AI &
Law’ (2018) 34(1) Computer Law & Security Review 314 <https://
ssrn.com/abstract=3021452>

• G Greenleaf, A Mowbray, and P Chung, ‘The Datalex Project:
History and Bibliography’ (3 January 2018). [2018] UNSWLRS 4
or <https://ssrn.com/abstract=3095897>

• G Greenleaf, A Mowbray, and P van Dijk, ‘Representing and using
legal knowledge in integrated decision support systems - DataLex
WorkStations’ Artificial Intelligence & Law, Vol 3, 1995, Kluwer,
97-142 <https://papers.ssrn.com/abstract_id=2183481>

1.4 Creating a new knowledge-base in the DataLex
Community

The DataLex Community (part of the AustLII Communities) is a
collaborative closed wiki-like platform used in the DataLex system

https://ssrn.com/abstract=3379441
https://ssrn.com/abstract=3021452
https://ssrn.com/abstract=3021452
http://www.austlii.edu.au/au/journals/UNSWLRS/2018/4.html
https://ssrn.com/abstract=3095897
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2183481

8 DATALEX DEVELOPER ’S MANUAL

for creating and editing knowledge-bases or rule-bases.
Log into the DataLex Community site

<http://austlii.community/wiki/DataLex/> by clicking on the
‘Log in’ button on the top right hand corner.

Figure 1.2: DataLex Community login
process.

Once the login process is verified, an extra row of buttons for
editing and creating new rule-bases will appear on the page.

Figure 1.3: Editing existing rule-base in
DataLex Community.

Click on ‘Edit’ to edit existing rule-bases.
To start a new rule-base (or topic), click on the ‘New’ button. Do

so from the DataLex page, or it will be a sub-page from wherever you
start. The following window will appear:

Figure 1.4: Creating new rule-base (or
topic) in DataLex Community.

Enter the ‘Title’ of the rule-base to be constructed. The example
here is ‘PrivacyKB’ for a privacy law knowledge-base. (For easy
identifiability, it is useful to give knowledge-bases the suffix ‘KB’.) In
the ‘Template’ section, select ‘DataLexKBTemplate’ (not ‘Default’).
Then, click on ‘Submit’.

In the editing screen for the rule-base (with heading ‘Title of
knowledge-base’), start editing your rule-base by deleting ‘ADD

http://austlii.community/wiki/DataLex/

DATALEX LEGAL KNOWLEDGE-BASE SYSTEMS 9

RULES HERE’. One way to start a rule base is to paste in a legislative
section, and start editing it to create rules.

To find your rule-base after you have logged back in, search for the
first few letters of the name of your rule-base (eg search for ‘FOI’ to
find FOIDocumentOfAnAgencyKB).

1.5 Creating a new knowledge-base using the Development
Tools

If you do not yet have an account in AustLII Communities, go to
<http://www.datalex.org/dev/import/> (AustLII’s DataLex
Knowledge-base Development Tools page – ‘KB Tools page’). No login is
necessary. This page enables creation and test-runs of small
applications using the DataLex software. However, it does not allow
test apps to be saved.

Figure 1.5: DataLex knowledge-base
development tools: Importing and
Editing rules.

There are two ways to start writing an app:

(i) Simply start writing in the ‘Edit DataLex knowledge-base’ editing
screen, following the instructions in this Manual.

(ii) If you know what section of an Australian Act you would like to
start with, go to the ‘Import legislative section (available on
AustLII)’ and enter the Act name, jurisdiction and section, then
start editing as in (i) above.

Select the ‘Run Consultation’ button when you are ready to test
your KB. Please note:

http://www.datalex.org/dev/import/
http://www.austlii.edu.au/

10 DATALEX DEVELOPER ’S MANUAL

Figure 1.6: DataLex knowledge-
base development tools: Running
Consultation and Checking rule-base.

• After running your app (successfully or unsuccessfully) you can
use your browser to come back to the KB Tools page to make
further edits to your KB.

• If your app does not run as intended, use the ‘Check Fact Cross
References’ and ‘Check Fact Translations’ buttons to run
diagnostics (see 2.5 below) to identify problems. Edit and run
again.

• If you have spent any significant time developing a test KB, you
might want to save a copy in a word processor or other file, in case
the browser malfunctions, or if you want to use the KB again after
you have quit the browser.

Refinements:

• To add another section of an Act from AustLII to an existing KB,
use the ‘Import and Append’ button after specifying the additional
section.

• To over-write and erase an existing KB with a new section from
AustLII, use the ‘Import and Replace’ button.

• To clear an existing KB and start again, use ‘Clear knowledge-base’.

1.6 Updates to this Manual

This PDF version of the Manual will be updated periodically. In
between PDF editions, incremental updates may be made to the wiki
version of the Manual located on AustLII Communities at <http:
//austlii.community/wiki/DataLex/DataLexDeveloperSManual>.

http://austlii.community/wiki/DataLex/DataLexDeveloperSManual
http://austlii.community/wiki/DataLex/DataLexDeveloperSManual

2
Rule-based inferencing (I): Knowledge-bases and rules

2.1 Introduction

The DataLex inferencing software is an Internet-based expert system
shell for the development of inferencing systems (sometimes called
‘expert systems’) in the legal domain. It may be used to develop
systems incorporating rule-based inferencing (discussed in this
Chapter and the two following chapters), example or case-based
inferencing (Chapter 7), and automated document assembly
(Chapter 6). The User Interface Manual is in Chapter 8.

2.1.1 Levels of complexity with DataLex

DataLex is very simple to use to create small practice expert systems,
at least for most types of statute-based applications. This is because
all you have to do, to get a small system up and running, is to
paraphrase a section or two of an Act into a somewhat strict logical
form, using logical connectors such as IF, THEN, AND and OR. The
result is a knowledge-base, expressed in DataLex’s ‘English like’
knowledge representation language. The DataLex inference engine
then does the rest, running your knowledge-base to generate a
dialogue with the user, asking questions and giving answers. You
don’t write any of the questions or answers – DataLex generates
them automatically from your knowledge-base.

However, while DataLex can be used easily by relying only on a
small number of its features, the DataLex engine has a very powerful
and complex range of features which can be used as you proceed to
develop more sophisticated applications.

The easiest way to understand how a
DataLex knowledge-base is written is
to study the examples given in this and
the following Chapters, and then to
use this Manual to explain features that
you don’t understand fully.

2.1.2 Main features

The main features of DataLex are:

• a ’quasi-natural-language’ or English-like syntax, which
encourages isomorphism (similarity between the structure of a
knowledge-base and source legal documents), transparency
(purpose of rules is relatively obvious) and rapid prototyping
(easy to get small systems running);

12 DATALEX DEVELOPER ’S MANUAL

• rules of any degree of complexity may be written, using
propositional logic;

• backward and forward chaining rule-based inferencing;

• conventional procedural code including mathematical
calculations;

• a form of reasoning by analogy, or example-based reasoning; and

• a document generation facility.

DataLex is therefore a fairly versatile tool with which a variety of
inferencing applications may be created.

2.1.3 User commands and the DataLex User Interface Manual

The DataLex User Interface Manual, in Chapter 8 of this Manual,
explains the interface to DataLex applications when they are
running, from a user perspective. It should be read either before or
in conjunction with this Chapter.

2.1.4 Developing a DataLex application – Where is the developer’s
interface?

See Chapter 1, sections 1.4 and 1.5 for the two ways to do this.
The developer’s interface for DataLex applications is primarily

within the DataLex section of the AustLII Communities environment
<http://austlii.community/wiki/DataLex/>. There is also a
development environment located outside AustLII Communities
which is used for teaching and development of test
knowledge-bases, the ‘DataLex Knowledge-base Development
Tools’ <http://www.datalex.org/dev/import/> .

2.2 Knowledge-bases and rules

A knowledge-base is a set of declarations, so called because they
’declare’ items of knowledge about a subject area. This type of
programming is therefore called ’declarative’ programming, in
contrast to ’procedural’ programming, which is of the form ’first do
this step; then do this step’. The author of a DataLex application
therefore creates a ’knowledge-base’ rather than a ’program’.

2.2.1 Knowledge-bases as sets of rules

The most important category of declarations in DataLex is rules (so
knowledge-bases are often called rule-bases). A knowledge-base, at
its simplest, is therefore a set of rules. When the rule-base is ’run’ by
DataLex it attempts to find the truth of a specified fact.

http://austlii.community/wiki/DataLex/
http://www.datalex.org/dev/import/

RULE-BASED INFERENCING (I) : KNOWLEDGE-BASES AND RULES 13

It does this by going to a rule which has that fact as its conclusion
and examining each of the premises of that rule to determine
whether the conclusion of the rule is true. In evaluating the premises
of a rule DataLex uses any other rules which have any of the
premises as their conclusion. DataLex repeats this process along
each branch of reasoning until it reaches a premise for which there is
no rule to derive a conclusion. At this point, DataLex interrogates
the user about the truth of the premise. It does not generally matter,
therefore, in which order the rules occur. Rather, DataLex searches
the knowledge-base for relevant rules in relation to each fact or
premise which it is evaluating.

2.2.2 Form of a simple rule

In its simplest form, a rule contains four elements:

(i) the keyword ‘RULE’, indicating the start of a new rule (in the
absence of any specification otherwise, the rule will be both
backward chaining and forward chaining);

(ii) the name of the rule (usually just the name of the Act and section
that it paraphrases); The name of a rule should differ from that of
any other rule in the rule-base;

(iii) the keyword ‘PROVIDES’, indicating the start of the body of the
rule; and

(iv) the statement(s) which make up the inferencing content of the
rule (one or more statements). Statements consist of declarations.
One of the simplest forms of a statement is ’IF condition THEN
conclusion’.

The simplest syntax for a rule is therefore as follows:

RULE name PROVIDES statements

The example below shows a rule with one moderately complex set
of statements:

RULE Freedom of Information Act 1982 (Cth) s11 PROVIDES

a person has a legally enforceable right under s11 to obtain

access to a document ONLY IF

s11(a) applies OR

s11(b) applies

2.3 Content of rules - keywords and descriptors

Knowledge-base rules consist of keywords and descriptors. Keywords
are used to join together, in a logical form, a number of descriptors,
which are simply terms or phrases used to describe some object, event
etc.

14 DATALEX DEVELOPER ’S MANUAL

2.3.1 Keywords

Keywords give rules the logical structure used by DataLex to draw
inferences. They are written in FULL UPPER CASE so DataLex can
distinguish them from their equivalents in ordinary words (which
may occur in descriptors).

Some examples of important keywords, or sets of keywords are:
ONLY IF; IF THEN; IF ... THEN ELSE; IS; AND; OR; PLUS;
MINUS ; PERSON; THING.

These and other keywords have functions in a DataLex
knowledge-base which is very similar to their normal linguistic
function as words. This correspondence is a large part of what gives
DataLex a ’quasi natural language’ or ’English like’ syntax.

There is a list of keywords which may be used with DataLex at the
end of Chapter 4.

DataLex is very case-sensitive. It
expects keywords to be in FULL
UPPER CASE.

2.3.2 Descriptors

Descriptors may be any sequence of words or symbols but must not
contain keywords (although they can contain the lower case versions
of them). Descriptors are generally written in lower case, with normal
capitalisation. See Chapter 3 for details of how descriptors should be
written in order to work best in DataLex.

In the example below, some descriptors used are ‘a person has a
legally enforceable right under s11 to obtain access to a document’,
‘s11(a) applies’ and ‘the document is not an exempt document’. These
are all attributes.

There are a number of varieties of descriptors, of which the most
important are (i) constants, (ii) facts or attributes, (iii) named subjects
(a special type of attribute) and (iv) rule names. Each is discussed
in detail in the following chapter. A type of attribute used only in
documents (see Chapter 6) is called ‘text’.

First, however, a simple example of a rule, and how to make it run,
is given.

2.4 Example of a rule – FOI Act s11

2.4.1 The section

The Freedom of Information Act 1982 (Cth) s11 reads:
11. Subject to this Act, every person has a legally enforceable right

to obtain access in accordance with this Act to –
(a) a document of an agency, other than an exempt document; or
(b) an official document of a Minister, other than an exempt

document.
A rule-base of 3 rules consisting solely of this section could read

as follows. The rules have been (over-)simplified, for demonstration
purposes, by ignoring the words ‘subject to this Act’ in s11.

RULE-BASED INFERENCING (I) : KNOWLEDGE-BASES AND RULES 15

2.4.2 A rule-base of 3 rules

RULE Freedom of Information Act 1982 (Cth) s11 PROVIDES

a person has a legally enforceable right under s11 to obtain

access to a document ONLY IF

s11(a) applies OR

s11(b) applies

RULE Freedom of Information Act 1982 (Cth) s11(a) PROVIDES

s11(a) applies ONLY IF

the document is a document of an agency AND

the document is not an exempt document

RULE Freedom of Information Act 1982 (Cth) s11(b) PROVIDES

s11(b) applies ONLY IF

the document is an official document of a Minister AND

the document is not an exempt document

2.5 Running and de-bugging a DataLex application

Text, such as that above, is all that is needed for a valid knowledge-
base. The knowledge-base can be invoked as a DataLex session by
selecting the ‘Run Consultation’ button.

If a knowledge-base does not behave as intended, go back to the
editing page, edit the rule, and run it again. The main purpose of the
type/paste window on the manual start page is to allow the
developer to test minor changes to rules without having to create a
new web page each time in order to do so.

2.5.1 Debugging

In addition to the ‘Run Consultation’ button, there are two additional
buttons which allow you to check for some types of errors in your
knowledge-base, either before you try to run it, or after you so, and
it does not perform quite as expected. They are ‘Check Fact Cross
References’ and ‘Check Fact Translations’.

There is also another debugging tool that can be used while the
application is running, Verbose Mode (see 8.10).

2.5.2 Check Fact Cross References

Use of similarly named but not identically named attributes is one
of the main causes of errors in YSH knowledge-bases, particularly
where rules which are supposed to chain do not do so. The ‘ Check
Fact Cross References’ button allows you to check for such errors.

The ‘Check Fact Cross References’ button causes each
fact/attribute to be printed (in alphabetical order - except where it
begins with an hypertext link) showing the names of rules which set
(*) and rules which use (-) the attribute. Named subjects are also
listed.

Use of similar but not identical
attributes is one of the main causes
of errors in DataLex. The ‘Check Fact
Cross References’ button allows you to
check for such errors.

16 DATALEX DEVELOPER ’S MANUAL

2.5.3 Check Fact Translations

Use of the ‘Check Fact Translations’ button enables you to check that
your attributes are expressed correctly.

For each attribute in the knowledge-base, in the order in which
they occur, it shows: (i) prompts (questions); (ii) a translation in
positive form; and (iii) a translation in negative form. For example,
the interrogative, positive and negative translations of the attribute
‘s11(a) applies’ are as follows:

-Does s11(a) apply?

-S11(a) applies.

-S11(a) does not apply.

Use the ‘Check Fact Translations’
button to check that your attributes are
expressed correctly.

2.6 Some style guidelines for DataLex applications

Although DataLex is designed to be fairly flexible, it is worth bearing
in mind the following guide-lines for developing rule-bases:

2.6.1 Simplicity

Try to aim for simplicity wherever possible. Complicated kludges
and workarounds detract from the readability of the code and can
have unexpected repercussions, particularly when the
knowledge-base is later expanded or changed. Don’t use facilities
simply because they are available.

2.6.2 Isomorphism

Where the knowledge-base represents rules from a legal source
document such as a piece of legislation, try to directly translate the
statutory rules into DataLex rules, observing as far as possible the
order and grouping of the legislative rules, and adding as little
interpretation as possible. Keep other rules, such as interpretation or
’common sense’ rules which do not derive directly from the
legislation, in a separate part of your rule-base.

2.6.3 Small rules

Avoid large and complicated rules. Small rules are easier to
understand and will assist with automatic explanations.

2.6.4 Attribute Names

Include the legal basis for attributes in their descriptors, as in the
layout is in "material form" as defined in s.5. This will make for more
meaningful explanations. Avoid using unnecessarily long
descriptors. These make for convoluted questions and explanations.
Do not use the translation and prompt options unnecessarily. Try

RULE-BASED INFERENCING (I) : KNOWLEDGE-BASES AND RULES 17

changing the attribute name to get DataLex to handle it properly,
first. Avoid use of embedded attributes.

2.6.5 Rule Types

Use only the default rule type unless you have a good reason for
doing otherwise. Forward chaining rules and daemons should
generally only be used to alter the operation of rules encompassing
knowledge rather than to embody knowledge themselves.

2.6.6 Declarative Representation

Do not represent knowledge procedurally using DETERMINE and
CALL statements except where unavoidable. Avoid being concerned
about the actual operation of knowledge-rich rules and instead
concentrate on describing the item of knowledge with which you are
dealing.

2.6.7 Comments

Avoid relying on comments to understand your code. The code
should largely be transparent. However, you can use comments to
indicate what legislative provisions you have omitted from your
DataLex representation.

3
Rule-based inferencing (II): Descriptors, keywords and

expressions

Rules in knowledge-bases consist of keywords and descriptors.
Keywords are used to join together, in a logical form, a number of
descriptors, which are simply terms or phrases used to describe some
object, event etc. Descriptors may be any sequence of words or
symbols but must not contain keywords (although they can contain
the lower case versions of them). Descriptors are generally written in
lower case, with normal capitalisation. The most important types of
descriptors, discussed in this Chapter, are (i) constants, (ii) facts or
attributes, (iii) named subjects (a special type of attribute) and (iv)
rule names.

3.1 Attributes (or ‘Facts’)

An attribute is any descriptor (a sequence of words or symbols
which does not contain a keyword) which is not a constant (see
below). The purpose of attributes is to hold values which are
determined during the evaluation of a knowledge-base. Every
sequence of text in a knowledge-base which is not a keyword or a
constant must therefore make sense as something which has a value.
(Chapter 6 explains an exception where text follows the keyword
TEXT)

Attributes are also referred to as ‘facts’ in the DataLex error
messages.

Attributes and other descriptors have a
maximum length of 256 characters.

3.1.1 Consistent naming of attributes

Consistent naming of attributes, including consistency in
capitalisation and punctuation, is vital to DataLex’s operation.
DataLex does not forgive inconsistency.

Lack of consistency is the principal
cause of DataLex applications running
other than as expected. Use the ‘Check
Fact Cross References’ button to check
for possible inconsistencies in naming
of attributes.

DataLex cannot tolerate
inconsistencies in either capitalisation
or punctuation.

3.1.2 Boolean (true/false) attributes and their names

The default attribute type is boolean (that is, true/false). When
naming boolean attributes, you should choose a name starting with a

20 DATALEX DEVELOPER ’S MANUAL

subject, then a verb (expressed in the positive or negative) and,
optionally, an object.

For example, each of the following is a boolean attribute, correctly
expressed:

Subject Verb Object
the claimant satisfies s23(1)
the circuit layout is in material form
section 9 applies
section 9 does not apply to bills of exchange

Table 3.1: Examples of recommended
subject/verb/object form

The purpose of the recommended subject/verb/object form is
explained below in relation to the generation of questions and
explanations (see 3.3 Generating questions and explanations).

3.1.3 Non-boolean attributes - types

DataLex recognises the following attribute types:

Type Values Example

BOOLEAN T/F/U (default type) See above
INTEGER whole numbers only the number of applicants
REAL fractions accepted the number of degrees tolerance
STRING a string of text the alleged defamatory statement
SEX M or F the sex of the claimant
DOLLAR dollars and cents the value of the estat
DATE a date the date of the intestate’s death

Table 3.2: Attribute types recognised by
DataLex

Non-boolean attributes are introduced in one of two ways: (i)
automatically by use; or (ii) formally by a declaration.

3.1.4 Automatic type recognition of non-boolean attributes

If the first use of an attribute in a knowledge-base requires DataLex
to recognise it as something other than boolean, that type is
automatically associated with it. From then on, you must use the
attribute consistently or an error message will result. In other words,
DataLex is able to make an ’intelligent guess’ about the type of
non-boolean attribute that is intended, based on other aspects of the
expression it is first found in. For example, in the expression ’IF the
date of arrival IS GREATER THAN 1 May 1977’, DataLex is able to
work out that the attribute ’the date of arrival’ is probably a
non-boolean attribute of type DATE, because another date (1 May
1977) appears in conjunction with a relational operator.

3.1.5 Formal attribute type declarations for non-boolean attributes

While DataLex is generally accurate in recognising non-boolean
attributes, it sometimes makes an error. This may be avoided or
corrected by an explicit declaration of the type of the attribute.

RULE-BASED INFERENCING (I I) : DESCRIPTORS , KEYWORDS AND EXPRESSIONS 21

The syntax for formal declarations is:

TYPE attribute-name

optionally followed by a list of translations and valid ranges
(discussed below).

For example, to declare attributes to be of the types ‘DATE’ and
‘DOLLAR’:

DATE the date of the intestate’s death

DOLLAR the value of the estate

Because of these declarations, or because of automatic recognition,
DataLex would only accept responses from a user that were of the
specified types.

Attribute declarations should appear outside of rules and
procedures. Otherwise, they can appear anywhere in a
knowledge-base, provided they appear somewhere in the
knowledge-base prior to where the attribute is first used. It is often
convenient to group them all at the start.

3.1.6 Range limitation of attribute values [advanced]

If there was a need to further limit the range of acceptable responses
from the user (eg to dates only within a specified period, or to
amounts less than a certain maximum), then a RANGE statement is
available

The syntax is:

RANGE expression [TO expression]

The statement should appear immediately after a fact declaration.
It may be used multiple times if there are many valid ranges. Where
the optional TO expression is used it indicates that the value for the
fact should be between the result of the first expression and the result
of the second expression. However, in this case the expressions must
produce numeric results.

Some examples of RANGE statements are:

STRING the name of the intelligence agency

RANGE "ASIO"

RANGE "ASIS"

RANGE "DSD"

DOLLAR the value of the household chattels

RANGE Ø TO the value of the estate

3.1.7 Attribute names for non-boolean attributes

You must choose an attribute name which can be followed by an ‘is’
then a value so that DataLex can correctly provide prompts and
translations. For example, the non-boolean attribute declarations

22 DATALEX DEVELOPER ’S MANUAL

given above will correctly result in the following prompts and (when
answered) translations:

DATE the date of the intestate’s death

What is the date of the intestate’s death ?

The date of the intestate’s death is 1st January 1991.

DOLLAR the value of the estate

What is the value of the estate ?

The value of the estate is $250,000.
DataLex cannot tolerate inconsistencies
in either capitalisation or punctuation.

3.2 Constants

Whereas attributes have a variable value which is determined
during the evaluation of a knowledge-base, a constant has a fixed
value. DataLex recognises any of the following descriptors as
constants: an integer (eg 1000), a real number (eg 7.15), a dollar
amount (eg $950 or $950.00), the words ‘true’ and ‘false’ (boolean
constant) and the words ‘male’ and ‘female’ (sex constant), a date (in
any sensible format), and any descriptor placed in double quotes (a
string constant).

DataLex is generally able to automatically recognise constants,
and to give them the correct type. If DataLex does not recognise a
descriptor as being in any of these categories of constant, it assumes
that the descriptor is an attribute.

Constants are used primarily in expressions which use binary
operators (eg PLUS; EQUALS; IS LESS THAN; IN) and in
assignment statements (see below).

3.3 Generating questions and explanations

One of DataLex’s main features is its capacity to automatically
generate questions (prompts) by re-parsing the attribute that it is
attempting to find a value for, into an interrogative form (ie by
re-parsing the part of the rule it is at present evaluating). Similarly, it
can provide explanations by re-parsing rules that it has previously
evaluated, substituting the values that it has established for those
rules.

3.3.1 Automatic generation of questions (prompts) and
explanations

Provided that boolean attribute names appear in the
subject/verb/object form explained above (see 3.1.2 Boolean
(true/false) attributes and their names), or non-boolean attribute
names appear in the ’is’ form explained above (see 3.1.3 Attribute
names for non-boolean attributes), DataLex will normally be able to
affect sensible translations automatically, for use during problem

RULE-BASED INFERENCING (I I) : DESCRIPTORS , KEYWORDS AND EXPRESSIONS 23

sessions. For the above examples, the following automatic prompts
and translations would be generated by DataLex:

Does the claimant satisfy s23(1) ?

The claimant satisfies s23(1).

The claimant does not satisfy s23(1).

Is the circuit layout in material form ?

The circuit layout is in material form.

The circuit layout is not in material form.

Does section 9 apply ?

Section 9 applies.

Section 9 does not apply.

What is the date of the intestate’s death ?

The date of the intestate’s death is 1st January 1991.

Use the ‘Check Fact Translations’ button to check whether sensible
prompts and translations are being generated.

3.3.2 Automatic recognition of different forms of the same attribute

DataLex re-parses all boolean attribute names into a consistent
positive form for storage purposes, and so recognises different
grammatical forms of the same attribute. For example, the following
statements all refer to the same attribute:

the Act applies

the Act does not apply

the Act does apply

It therefore does not matter which form you use in a rule, as
DataLex will normally understand that you are referring to the same
attribute. In other words, different forms of the attribute can be used
in different rules.

3.3.3 Verbs declarations - correcting DataLex’s grammar

While DataLex’s ability to ‘understand’ and generate different
grammatical forms of the same attribute is reasonably sophisticated,
it sometimes makes errors in translating verbs into different tenses.

For boolean attribute names, the most important component of
the describing sentence is the verb. DataLex only knows about a
small list of very common verbs. For the remainder it simply makes
an educated guess (ie it uses a fairly simple set of heuristic rules
concerning the behaviour of verbs). DataLex has to be able to locate
the verb and transform its plurality and tense.

Where DataLex makes a mistake, its behaviour can be altered by a
declaration specifying that a word is a verb and giving the
appropriate forms. The syntax for this is:

24 DATALEX DEVELOPER ’S MANUAL

VERBS { base~first_person~third_person_singular~past }

as in:

VERBS

ma~ke~kes~de

s~ell~ells~old

This declares that the forms of ‘make’ (which has the base ‘ma’)
are ‘make’ (first person), ‘makes’ (third person singular), and ‘made’
(past).

Where another form is the same as the base, just leave that form
blank and put two tildes consecutively ie ~~ .

This verbs declaration should appear outside of other declarations
such as rules and procedures. It is sensible to put a list of all verbs
at the start of a knowledge-base. However, a verbs declaration may
occur more than once.

Here is a list of common verbs known to cause problems. If you
use any of them, you should declare that verb. It would be useful to
include this list in any application, in case any of these verbs are used.

b~ear~ears~ore

se~nd~nds~nt

t~ell~ells~old

s~ell~ells~old

g~ive~ives~ave

t~ake~akes~ook

ma~ke~kes~de

c~ome~omes~ame

f~ind~inds~ound

b~uy~uys~ought

beg~in~ins~an

br~eak~eaks~oke

br~ing~ings~ought

s~ay~ays~aid

Where DataLex cannot recognise a verb, this can sometimes be
remedied by putting the word ’will’ in front of the verb in the
attribute, because DataLex recognises ’will’ as a compound
verb.

3.3.4 Adding your own attribute translations - PROMPT and
TRANSLATE [advanced]

One of the main purposes of DataLex’s automatic re-parsing of rules
to produce prompts and explanations is so that there is normally no
need to maintain separate bodies of text for each attribute, with all
the complications this implies for development and maintenance.

However, if the automatic parsing performed by DataLex is
inadequate for some reason, it is possible to ‘override’ it and to
declare what the prompt and translation should be for a particular
attribute.

RULE-BASED INFERENCING (I I) : DESCRIPTORS , KEYWORDS AND EXPRESSIONS 25

For example, the attribute ‘the date of death of the intestate’
would normally generate the prompt ‘What is the date of death of
the intestate?’ and the translation would be ‘The date of death of the
intestate is’. This can be altered by adding PROMPT and
TRANSLATE statements after an attribute type declaration for the
attribute. For example:

DATE the date of death of the intestate

PROMPT when did the intestate die

TRANSLATE AS the intestate died on <>

The use of angle brackets (ie <>) without an attribute name causes
the value of the attribute being evaluated to be substituted.

Where an attribute has more than one possible value, different
translations for each value may be provided. For example:

INTEGER the number of surviving children

PROMPT how many children survived the intestate

TRANSLATE 0 AS no children survived the intestate

TRANSLATE 1 AS one child survived the intestate

TRANSLATE AS <> children survived the intestate

Where no value appears (as in the last TRANSLATE statement
above) this is used as the default translation for values which do not
match any of the other TRANSLATE statements.

Avoid using your own attribute
prompts or translations if possible.
DataLex knowledge-bases are easier to
maintain if translations are automatic.

3.4 Named subjects - names of people and things

Attribute descriptors often contain references to persons and things
as their subjects (eg ‘the intestate’, ‘the property’). By default, the
generated prompts and translations just use these embedded subject
descriptions literally. If you wish, you can have these automatically
replaced with names, pronouns and possessives. Subjects which are
to be treated in this way are referred to as named subjects.

The use of named subjects allows you to instantiate the dialogues
that DataLex generates, making them appear much more responsive
to the answers you have already given.

Use named subjects wherever possible,
as they improve communication.

3.4.1 Named subject declarations

Named subjects are a set of special attributes. They are declared in
the same way as attributes, but are given the types PERSON, THING
or PERSONTHING. When an attribute containing a defined subject
is first evaluated, automatic prompts for a subject name and, in the
case of persons, the subjects’ sex, will be issued. Where the type is
PERSONTHING, the subject may be either a person or a thing (eg
where either a natural person or a company may be a subject). A
prompt (Is x a natural person ?) will be issued to determine this.

26 DATALEX DEVELOPER ’S MANUAL

Examples:

PERSON the claimant

THING the agreement

PERSONTHING the first party

PERSON the intestate

Once a named subject is declared, DataLex will recognise it as a
named subject in any subsequent part of the rule-base, without need
for any further identification of it as such. Named subjects referred to
in other attributes are recognised automatically, and their values are
substituted in the other attributes.

For example, where there have been named subject declarations
such as the ones above, an attribute in a rule such as ’the claimant
has made a statutory declaration concerning the agreement’ would
generate a prompt such as ’Has John Smith made a statutory
declaration concerning the Contract of Insurance?’.

3.4.2 The automatic attribute declarations [advanced]

When a named subject is declared, it results in up to another three
automatic attribute declarations. These take the following forms:

the name of subject (set for all types)
the sex of subject (set for PERSONS and PERSONTHINGs)
subject is a natural person (set only for PERSONTHINGs)

Table 3.3: Examples of automatic
attribute declarations.

These automatically declared attributes can be manipulated just
like normal ones. The types are STRING, SEX and BOOLEAN
respectively. This allows you to work out whether or not a
PERSONTHING is a natural person, or to force gender as in:

RULE the definition of "defacto" PROVIDES

IF the sex of the intestate EQUALS male THEN

the sex of the de facto IS female

ELSE

the sex of the de facto IS male

It also allows you to change the default prompts and translations,
as in:

PERSONTHING the claimant

STRING the name of the claimant

PROMPT please enter the claimants’ name

TRANSLATE AS the claimants’ name is

BOOLEAN the claimant is a natural person

TRANSLATE true AS the claimant is a natural person

TRANSLATE false AS the claimant is a company

SEX the sex of the claimant

TRANSLATE male AS the claimant is a man

TRANSLATE female AS the claimant is a woman

RULE-BASED INFERENCING (I I) : DESCRIPTORS , KEYWORDS AND EXPRESSIONS 27

3.5 Variable attributes [advanced]

An important aspect of DataLex is that it allows legal knowledge to
be represented in something approaching English (’quasi natural
language’ knowledge representation). This is one reason why
propositional logic is used as the form of representation, as opposed
to predicate calculus. Predicate logic is, however, more powerful.
One of its advantages is that it allows rules where there may be a
number of instances of an attribute which need to be considered in
the one problem session (eg the attribute ’is a child of the intestate’
may be satisfied by three children, all of whom may need to be
considered).

Variable attributes have been introduced into DataLex as an
experimental way of dealing with such problems. However, they
detract from the ’English-like’ nature of the syntax and should only
be used sparingly.

A variable attribute is allowed to contain one (only) variable
element, which element is represented as <>. Whenever DataLex
encounters this <> symbol in a rule, it looks for instance of the
attribute in other rules which are identical except that they have the
variable element ’filled in’. These instances of the variability are then
’read into’ the rule under consideration. In effect, DataLex creates
multiple versions of the rule under consideration, one for each
instance of the variable element being satisfied. In any expression
containing the <> variable, each instance of the <> variable will be
given the same value. DataLex then proceeds to process whichever
version of the rule is satisfied on the facts given. A variable attribute
is therefore a shorthand way of writing multiple rules with slightly
different wordings.

For example, s32(4) of the Copyright Act 1968 (Cth) specifies
whether a person is a ’qualified person’ in determining whether a
work is protected by copyright. Various different timing and other
conditions can satisfy the requirements for a ’qualified person’. The
rule below shows that only one rule need be written to capture this.

RULE Copyright Act 1968 s32(4) PROVIDES

the author was a ’qualified person’ <> under s32(4) ONLY IF

the author was an Australian citizen <> OR

the author was an Australian protected person <> OR

the author was a person resident in Australia <>

If the system needs to determine at any time a value for the
attribute “the author was a ’qualified person’ at the time the work was
made under s32(4)” (emphasis added), in order to process another
rule, the above rule will cause the following questions to be asked:

Was the author a ’qualified person’

at the time the work was made under s32(4)? [emphasis added]

28 DATALEX DEVELOPER ’S MANUAL

Was the author an Australian protected person

at the time the work was made under s32(4)? [emphasis added]

Was the author a person resident in Australia

at the time the work was made under s32(4)? [emphasis added]

If the answer to any of these is ’yes’, the rule will fire and the
attribute “the author was a ’qualified person’ at the time the work was
made under s32(4)” (emphasis added) will obtain a ’true’ value.

Similarly, if the system needs to know a value for the attribute, “the
author was a ’qualified person’ for a substantial part of the period during
which the work was made under s32(4)” (emphasis added), the rule will
ask the appropriate questions to obtain a value for this attribute.

In other words, one variable rule can be used to obtain values for
numerous similar but not identical attributes which have similar
conditions for their satisfaction.

Variable attributes should only be used
sparingly and with considerable care.

3.6 Expressions - the use of operators

An expression consists of attribute and constant references,
connected by operators (types of keywords). Expressions are used to
build more complex statements. Attribute names and constants have
already been discussed. Operators therefore describe relationships
between two attributes (in the case of binary operators), or (in the
case of a Unary operator) transform an existing attribute. The
available operators (in order of precedence) are:

3.6.1 (Pre) Unary Operators

NOT boolean NOT
DAY extract day from date
MONTH extract month from date
YEAR extract year from date

3.6.2 (Post) Unary Operators

DAYS date days multiplier
WEEKS date weeks multiplier
MONTHS date months multiplier
YEARS date years multiplier

3.6.3 Binary Operators

DIVIDED BY arithmetic division
TIMES arithmetic multiplication
PLUS arithmetic addition
MINUS arithmetic subtraction
IN relation in (substring)
EQUALS relational equality

RULE-BASED INFERENCING (I I) : DESCRIPTORS , KEYWORDS AND EXPRESSIONS 29

NOT EQUALS relational inequality
IS GREATER THAN relational greater than
IS LESS THAN relational less than
IS GREATEREQUAL THAN relational greater equals
IS LESSEQUAL THAN relation less or equal
AND boolean conditional AND
OR boolean conditional OR

(The normal AND and OR; AND has higher binding strength than OR;
DataLex ceases evaluation of expressions where an ‘AND’ condition fails
or an ‘OR’ condition is satisfied, and does not evaluate the other arguments
in the expression)

AND/OR boolean conditional OR (high binding)
(A special OR with a higher binding strength than AND; use instead of
BEGIN-END pairs to ensure the order of evaluation)

AND/WITH boolean non-conditional AND
OR/WITH boolean non-conditional OR
AND/OR/WITH boolean non-conditional OR (high binding)

(Special AND and OR operators where DataLex continues to evaluate the
other arguments in the expression even though an ‘AND’ condition fails
or an ‘OR’ condition is satisfied; Used to force DataLex to evaluate all
alternatives.)

3.6.4 Examples of the use of expressions

the year in which the layout was made PLUS 10

the date of death PLUS 50 YEARS

YEAR the date of death

the value of the estate IS GREATER THAN 0

4
Rule-based inferencing (III): Rule types, statements

and evaluation order

Rule types and statements control the order in which the evaluation of
rules, and attributes within rules, take place in a DataLex inferencing
session.

4.1 Order of evaluation of rules, and within rules, in
inferencing

The main elements of the process whereby DataLex uses a rule-base
to draw inferences are as follows:

(i) The evaluation of a particular attribute (eg determining the truth of
a fact) is set as DataLex’s current ’goal’ - see 4.2 below concerning
’LISTED’ and ’GOAL’ rules for how such goals are determined.

(ii) DataLex uses the rules in its rule-base to infer a value for this
attribute, principally through the use of backward chaining and
forward chaining reasoning. DataLex uses both backward and
forward chaining reasoning, in that rules are first invoked in a
backward-chaining fashion whenever an attribute needs to be
evaluated in order to determine whether a rule will ’fire’.
However, whenever a new attribute value becomes known, all
rules using that attribute are silently evaluated (a forward
chaining daemon).

However, which rules participate in the backward chaining
process and which in the forward chaining process, and how they
do so, is determined to some extent by what types of rules they
are declared to be - see below concerning Types of rules.

(iii) Once a rule is being evaluated for purposes of either backward or
forward chaining, the order in which the attributes and statements
which make up the rule’s content are evaluated depends largely on
the order in which they occur.

32 DATALEX DEVELOPER ’S MANUAL

4.2 Goals - LISTED rules and GOAL rules

DataLex must start its inferencing process by determining what its
current goal is. DataLex will attempt to evaluate the first rule in the
rule-base, if no rule is declared to be either a GOAL or LISTED. If
only one rule other than the first is a GOAL RULE or LISTED RULE,
DataLex will start to evaluate that rule. Otherwise, DataLex will start
by giving the user a choice between all rules in the rule-base which
are declared to be either GOAL or LISTED rules. The chosen rule is
then treated as the current goal.

For present purposes, there is no difference between LISTED rules
and GOAL rules.

4.2.1 Multiple GOALS

More than one rule may be declared to be a GOAL. When DataLex is
invoked it will automatically present the user with a list of the names
of all rules specified as GOALS, and ask the user which one is to be
evaluated. Names of rules which are GOALS must therefore be
sensible enough to appear in a menu of goals.

4.3 Order of evaluation of rules

When the system is inferring a value using backward and/or
forward chaining rules, it will evaluate rules in the order in which
they appear in the knowledge-base. The order of appearance will not
normally have any effect on the outcome of a consultation, but can
affect whether questions of the user are asked in a sensible order.
More general rules should be declared before more specific ones,
where they relate to the same subject matter. Procedures may be
declared in any order.

4.3.1 Calling rules [advanced]

All types of rules can be specifically CALLed. The syntax is:

CALL rule/procedure name

The statements for the named rule or procedure will be executed
and control will be returned to the next statement after the CALL.
This statement should only be used to control knowledge-rich rules.
It should not be part of any rule which itself contains knowledge of
any sort.

4.3.2 Rule names

The rule name is used to document what the rule is about and to give
a point of reference for calls. Each rule name should be different. Rule
names are essential if a rule is to be a GOAL RULE, because the user

RULE-BASED INFERENCING (I I I) : RULE TYPES , STATEMENTS AND EVALUATION ORDER 33

must know which rule they are choosing to evaluate. Rule names are
optional but should be used.

Examples of some ways of naming rules:

RULE subsistence of copyright PROVIDES

RULE Copyright Act s36(1) PROVIDES

RULE Copyright Act s36(2) PROVIDES

RULE Copyright Act s36(2) [continuation 1] PROVIDES

4.3.3 The ORDER declaration [advanced]

The order of rule evaluation can be controlled by specifying the rule
order in an ORDER block, with the syntax:

ORDER rule-name {THEN rule-name}

The main purpose of this is to allow rules to be written in the
order in which they appear in legislation, without this necessarily
determining the order in which they might fire. An order declaration
must appear before the rules named.

4.4 Types of rules

4.4.1 The default type - backward and forward chaining

The default rule type is both backward chaining and a
forward-chaining daemon. So, a rule that starts

RULE name of the rule PROVIDES ...

will be both backward and forward chaining, in default of any
other specification.

Use the default form unless there is
good reason not to.

4.4.2 Declaring other types of rules

You can alter this rule behaviour by declaring the type of the rule.
The possible types are BACKWARD, DAEMON, DOCUMENT,
FORWARD and PROCEDURE. Each is explained below.

To declare that a rule is a particular type, you put the type of the
rule before the keyword RULE at the start of the rule. Examples:

BACKWARD RULE the name of the rule PROVIDES ...

This rule will only be backward chaining.

FORWARD RULE the name of the rule PROVIDES ...

This rule will only be forward chaining.

34 DATALEX DEVELOPER ’S MANUAL

4.4.3 Syntax for rule types

The rule declaration syntax is:

[GOAL]
PROCEDURE|DAEMON|BACKWARD|FORWARD|RULE
[RULE] [name] PROVIDES statements

4.4.4 Backward rules

If a rule is declared to be a BACKWARD RULE it is only ever used for
backward chaining.

4.4.5 Forward rules

FORWARD RULES are only used for forward-chaining. DataLex
attempts to evaluate a FORWARD rule when the first attribute
needed to execute the rule becomes known. Where necessary,
FORWARD rules will ask the user for any other attribute value
necessary to evaluate the rule (ie they do not operate ‘silently’ - they
ask questions where necessary).

4.4.6 Daemons

DAEMONS are like FORWARD rules but operate silently (ie they
never ask the user for information and will silently fail to file if they
need to do so).

4.4.7 Procedures

PROCEDURES are not invoked by either forward or backward
chaining. Evaluation of a procedure must be invoked explicitly,
either by the procedure being called (see 4.3.1 below concerning
calls), or by the procedure being declared to be a goal and invoked as
a goal.

4.4.8 Documents

DOCUMENTS are like procedures but are used to generate
documents (see later Chapter 6 concerning Documents).

4.5 Statements

There are several different types of statements. These include:
assignments and assertions (using ONLY IF, IS and ASSERT),
conditional evaluation of facts (using IF-THEN and IF-THEN-ELSE
statements), conditional looping (using WHILE-DO and
REPEAT-UNTIL statements), DETERMINE statements and CALL
statements.

RULE-BASED INFERENCING (I I I) : RULE TYPES , STATEMENTS AND EVALUATION ORDER 35

For most purposes, conditional evaluation of facts
(IF-THEN-ELSE) and assignments and assertions (using ONLY IF, IS
and ASSERT) are the only types that need to be used.

4.5.1 Conditional evaluation of facts (IF-THEN-ELSE statements)

IF-THEN-ELSE statements provide for conditional evaluation of
attributes. The syntax is:

IF expression THEN statement [ELSE statement]

expression is evaluated and if true, the statement following the
THEN is executed. If an ELSE statement is provided and expression
evaluates false, then the statement following ELSE will be executed.

The ELSE part of the statement is optional.
Examples:

IF it is raining

THEN you should take an umbrella

ELSE you should go out

4.5.2 Inclusive definitions

Where a statutory definition is only inclusive (ie not exhaustive), the
IF-THEN form is appropriate. For example, the definition of
’dramatic work’ in the Copyright Act 1968 (Cth) can be represented
in part as

IF the work is a choreographic work or other dumb show OR the work

is a scenario for a script for a cinematograph film

THEN the work is a dramatic work

There is no ELSE because many other undefined types of drama
may qualify as dramatic works.

One rule can include a number of IF-THEN statements in
succession.

4.5.3 Assigning values - Assignments and Assertions (IS, ONLY
IF and ASSERT)

Values may be assigned to attributes by use of the IS operator (or the
equivalent ONLY IF operator) or (in the case of boolean attributes) by
assertion.

4.5.4 Assertions

An assertion is used to state that an attribute has a true or false value
(ie to assert that it is true or false). Assertions can therefore only be
used with boolean (true or false) attributes. An assertion statement
simply consists of a boolean attribute name expressed in the positive
or negative form, optionally preceded by the keyword ASSERT or
AND.

36 DATALEX DEVELOPER ’S MANUAL

For example:

the Act applies

is the same as

ASSERT the Act applies

The following are also the same:

the corporation is an overseas corporation AND the Act does not apply

ASSERT the corporation is an overseas corporation AND the Act does not apply

The ASSERT or AND keyword should only be used where it is
necessary to separate multiple assignments and assertions, or to
separate an assignment or assertion from a previous expression. For
example:

the circuit layout is in material form AND

the circuit layout is an eligible layout

4.5.5 Assignments

IS and ONLY IF are used to assert that two attributes have identical
values (but not that either are true/false), or that an attribute is
identical to a constant. They can therefore be used in either of two
ways:

attribute IS constant
attribute1 (unknown) IS attribute2 (known)

There is no difference between the IS and ONLY IF operators, but
normally the use of IS will yield more natural English statements in
relation to valued attributes (dates, numbers etc) where ONLY IF is
more appropriate in the case of booleans (true/false).

4.5.6 Syntax for assignments and assertions

The syntax for assignments and assertions is:

[AND|ASSERT] attribute IS expression

or

[AND|ASSERT] attribute ONLY IF expression

Where an ELSE statement is merely the negation of a THEN
statement, this is exactly the same as an ONLY IF statement (which is
preferable as it is more understandable). For example,

IF it is raining

THEN you should take an umbrella

ELSE you should not take an umbrella

would be better expressed as

you should take an umbrella ONLY IF it is raining

RULE-BASED INFERENCING (I I I) : RULE TYPES , STATEMENTS AND EVALUATION ORDER 37

4.5.7 DETERMINE Statement

The DETERMINE statement allows for control over attribute
evaluation. The syntax is:

DETERMINE [IF] attribute

The effect is to cause DataLex to determine a value for the
attribute by first evaluating any relevant backward chaining rules
(commencing with any which have attribute as a conclusion), and
then, if necessary, prompt the end-user for a value.

The DETERMINE statement is sometimes useful as part of a
GOAL RULE. It allows the user to simply specify that DataLex
should attempt to evaluate a particular attribute. For example, the
FOI example given earlier could commence with a rule including the
statement:

DETERMINE IF a person has a legally enforceable right under

s11 to obtain access to a document

However, this procedural approach will defeat the purpose of a
declarative rule base if mis-used. In the above example, it would
provide no advantages.

Avoid the use of DETERMINE
statements.

4.5.8 CALL Statement [advanced]

The CALL statement allows rules and procedures to be invoked
explicitly. The syntax is:

CALL procedure-name

The statements for the named rule or procedure will be executed
and control will be returned to the next statement after the CALL.
This statement should only be used to control knowledge-rich rules.
It should not be part of any rule encompassing knowledge of any
sort. CALLs are a procedural device which detracts from the
declarative nature of the knowledge-base. They are valuable mainly
for document generation, which is inherently procedural (see
Chapter 6).

Use of CALLs should generally be
avoided (except in DOCUMENT rules).

4.5.9 WHILE-DO and REPEAT-UNTIL Statements [advanced]

The WHILE-DO and REPEAT-UNTIL statement pairs, provide for
conditional looping. The syntax is:

WHILE expression DO statement

and

REPEAT statements UNTIL expression

38 DATALEX DEVELOPER ’S MANUAL

4.5.10 Use of BEGIN - END pairs

Multiple statements can be grouped by use of a BEGIN-END pair.
This is the same as using parentheses to group statements.

Example:

IF the Act does not apply THEN BEGIN

the claimant fails AND

there is nothing more to do

END

The use of BEGIN-END pairs is largely
unnecessary due to the AND/OR
operator (see below).

RULE-BASED INFERENCING (I I I) : RULE TYPES , STATEMENTS AND EVALUATION ORDER 39

4.6 Appendix – List of Main Keywords (all types) used by DataLex

4.6.1 Rule types

RULE

GOAL

PROCEDURE

BACKWARD

FORWARD

DAEMON

DOCUMENT

EXAMPLE

4.6.2 Attribute types

BOOLEAN

INTEGER

REAL

DOLLAR

SEX

STRING

DATE

4.6.3 Document types

(Documents only)

PARAGRAPH

LINE

TEXT

4.6.4 Named subject types

THING

PERSONTHING

4.6.5 Translation operators

TRANSLATE - AS

PROMPT

4.6.6 Statement operators

ASSERT

DETERMINE

IF - THEN - ELSE

ONLY IF

IS

WHILE - DO

REPEAT - UNTIL

CALL

BEGIN - END

4.6.7 Expression operators

(Pre) Unary Operators

NOT

MINUS

PLUS

DAY

MONTH

YEAR

(Post) Unary Operators

DAYS

WEEKS

MONTHS

YEARS

Binary Operators

DIVIDED BY

TIMES

PLUS

MINUS

IN

EQUALS

NOT EQUALS

IS GREATER THAN

IS LESS THAN

IS GREATEREQUAL THAN

IS LESSEQUAL THAN

AND/OR

AND/OR/WITH

AND

AND/WITH

OR

OR/WITH

4.6.8 Layout operators

(Documents only)

NUMBERED

LEVEL

4.6.9 Miscellaneous keywords

RANGE - TO

VERBS

PROVIDES

ORDER

5
Integration of DataLex knowledge-bases with AustLII

and other LIIs

5.1 Overview - Integration of DataLex knowledge-bases with
their sources

DataLex has five principle features which enable it to be integrated
into the web context, and, in particular, into AustLII and AustLII
Communities:

1. Automated addition of links to AustLII legislation;

2. Automated addition of links to case law on AustLII or any
collaborating legal information institute (LII), or with a citation
table in the LawCite citator;

3. Explicit links to any other web resources;

4. Explicit links to searches over AustLII (or other search engine); and

5. Cooperative inferencing using knowledge-bases from multiple
pages or sites.

Further forms of integration which are not yet available are the
inclusion of links from AustLII primary materials to DataLex
knowledge-bases, and the inclusion of knowledge-bases in AustLII
search results.

See the articles listed in Chapter 1 for the theoretical advantages of
various types of integration discussed in this chapter.

5.2 Automatic links to AustLII legislation

Links to names of Acts (and sections within Acts) that are located on
AustLII can be added automatically to your knowledge-base, without
the need to create explicit links to those Acts or sections.

To effectively create links to AustLII legislation, observe the
following guidelines:

• Each time an Act or section is referred to in the body of a rule, put
the full name of the Act and section (for example ‘Privacy Act 1988

42 DATALEX DEVELOPER ’S MANUAL

section 6D’). If the Act name is not included, the mark-up software
might not be able to determine in which Act the section is to be
found.

• Reference to ‘section 5’ or ‘s.5’ or ‘s5’ or ‘s5(3) or ‘subsection 5(3)’
are effective, but ‘paragraph 5(3)’ is not – change ‘paragraph’ to
‘section’.

• Automatic links are not created to words defined in Acts.
However, as shown below, explicit links can be created to such
definitions.

• Automatic links are not (as yet) provided to legislation in
jurisdictions outside Australia, but explicit links may be created to
such legislation (see below).

5.3 Automatic links to case law

Where a decision in a case is properly cited (either by a neutral
citation or proprietary citation) in the name of a rule, or in the body
of the rule, this will result in the automatic creation of a hypertext
link to either (i) the text of the decision, if the decision is included in
AustLII or another collaborating LII (eg NZLII, BAILII, HKLII,
PacLII, SafLII, CanLII), or (ii) the LawCite citator, if the decision has
a citation table there. The LawCite record for a decision can also be
accessed from that decision.

Links to these cases are available in relevant reports and
explanations, and to provide assistance when the user is answering
questions relevant to a case. For example, in the Finder KB
application, when the user is asked about the finder of a chattel ‘Was
he the occupier of the premises ?’, and responds ‘Why?’, the system
replies ‘This will help determine whether or not the situation is
similar to Armory v Delamirie [1722] EWHC KB J94.’, with a link to
the LawCite citator entry.

As discussed in Chapter 7, with EXAMPLE rules based on
decisions in particular cases, it is particularly important that a full
title and citation for the decision be included in the title of the
EXAMPLE. Automatic links to cases in Reports means that the user
can go to the cases cited in the Report, in order to assess whether
they agree with the suggestions for following and distinguishing
particular cases given in the Report. In making such a decision they
can inspect not only the text of the suggested cases, but also the
LawCite record for each of the suggested cases in order to determine
whether there are subsequent cases that have a bearing on the
suggested cases (and may have been decided after the
knowledge-base was written). For discussion of the value of such
facilities, see the article ‘Utilising AI in the Legal Assistance Sector –
Testing a Role for Legal Information Institutes’ cited in Chapter 1.

http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html

INTEGRATION OF DATALEX KNOWLEDGE-BASES WITH AUSTLI I AND OTHER LI IS 43

5.4 Explicit links in a knowledge-base (the LINK ... TO ...
keywords)

In addition to automatic links to AustLII, specific links can be
specified in the knowledge-base. The keywords LINK and TO are
used to specify in a knowledge-base that a particular word or phrase
is always to appear as a hypertext link to a particular URL. This is
very useful for creating links to definitions or cases.

LINK ...TO ... can be used to create links from a knowledge-base to
anywhere on the world-wide-web, not just to AustLII.

5.4.1 Example

LINK document of an agency TO

http://www.austlii.edu.au/au/legis/cth/consol_act/foia1982222/

s4.html#document_of_an_agency

RULE Freedom of Information Act 1982 (Cth) s11(a) PROVIDES

s11(a) applies ONLY IF

the document is a document of an agency AND

the document is not an exempt document

5.5 Stored searches from DataLex knowledge-bases

It is also possible to use LINK ...TO ... to create links from a
knowledge-base to a stored search over AustLII, or over any other
web-based search engine.

5.5.1 Example

To link to a search over AustLII for the phrase ‘official document of a
Minister’:

LINK official document of a Minister TO

http://www.austlii.edu.au/cgi-bin/sinosrch.cgi?

method=auto&query=%22official+document+of+a+Minister%22

RULE Freedom of Information Act 1982 (Cth) s11(b) PROVIDES

s11(b) applies ONLY IF

the document is an official document of a Minister AND

the document is not an exempt document

5.6 ‘Co-operative inferencing’ – knowledge-bases in multiple
locations

‘Co-operative inferencing’, as we are tentatively calling it, is an
innovative aspect of DataLex. It allows different knowledge-base
developers to place knowledge-bases on any web page anywhere in
cccse other knowledge-bases located elsewhere on the web which
they specify are to be ‘included’. In this sense, knowledge-base

44 DATALEX DEVELOPER ’S MANUAL

development becomes a ‘co-operative’ activity where developers can
contribute their small (or not so small) knowledge-bases to a larger
enterprise.

5.6.1 The INCLUDE keyword

The use of the keyword INCLUDE in a knowledge-base, followed by
the URL of another page containing a DataLex knowledge-base, will
cause the second knowledge-base to be loaded with the first
knowledge-base, and the two run together.

More than two knowledge-bases can be declared to be INCLUDEd.
There is no limit on the number.

It does not matter if an INCLUDEd knowledge-base INCLUDEs
the knowledge-base that INCLUDEd it - ie DataLex does not go into
an endless loop loading the same knowledge-bases.

It is useful to make the URLs of INCLUDEd knowledge-bases live
links, so that users of a knowledge-base can conveniently view all
knowledge-bases which are to be included in a consultation. See the
‘FOI s11 (start here)’ knowledge-base for examples.

5.6.2 Example

To include a KB ‘DefinitionOfDocument’ in the evaluation of this
freedom of information KB, so that the attribute ‘the item requested
is a document’ will be evaluated:

INCLUDE http://austlii.community/wiki/DataLex/DefinitionOfDocument

GOAL RULE Access to documents under Freedom of Information Act 1982 (Cth)

s11 PROVIDES

the person applying does have a legally enforceable right under

s11 of the Freedom of Information Act 1982 to obtain access

to the document requested ONLY IF

the item requested is a document AND

Freedom of Information Act 1982 s11 (1)(a) applies AND/OR

Freedom of Information Act 1982 s11 (1)(b) applies

5.6.3 At least one GOAL rule must be specified if INCLUDE is used

As in the example above, you must specify which rule is the GOAL
RULE that is to start the consultation, because the operation of
INCLUDE means that you cannot be certain which rule DataLex will
consider is the first one appearing in your knowledge-base.

If more than one GOAL RULE is specified in a set of ‘co-operative’
knowledge-bases, the user will be given a choice of which rule is to
start the consultation. GOAL RULEs may be declared in any
knowledge-base.

6
Document assembly using DataLex

DataLex also includes an automated document generation (or
’assembly’) component. This aspect is not yet developed fully. The
features described below are sufficient to generate simple
documents.

6.1 DOCUMENT rules

Documents may be generated by declaring rules of type
DOCUMENT. Normally, one DOCUMENT rule will generate one
paragraph of a document, and a group of rules can be used to
generate all the clauses of a legal document. DOCUMENT rules
differ from other types of rules only in that the statements
PARAGRAPH and TEXT are available to write paragraphs to
documents. The syntax is discussed below under the heading
Statements.

Document rules are only ever effective if they are declared a GOAL
rule or if explicitly called (via the CALL statement) from other rules.

6.1.1 DOCUMENT rules as goals

If the GOAL rule is a DOCUMENT rule, the usual report generated
by a consultation is replaced by the generated document (ie no report
is generated).

6.1.2 Example - a clause of a will

The following example is a DOCUMENT rule for one clause of a will,
with two alternative conditional forms of the clause. The elements of
the example are explained below.

DOCUMENT Revocation PROVIDES

IF all former testamentary disposition are to be revoked THEN

NUMBERED PARAGRAPH I revoke all former testamentary dispositions.

ELSE

NUMBERED PARAGRAPH I revoke all former testamentary dispositions

except clause(s) <list of clauses from the old will which are to be

saved> of my testamentary disposition dated <the date of the old will>

which clause(s) I hereby confirm.

46 DATALEX DEVELOPER ’S MANUAL

6.2 Text generation statement types - PARAGRAPH and
TEXT

The two statement types PARAGRAPH and TEXT allow text to be
added to documents from rules of type DOCUMENT. They have no
effect in non-document rules, and should not be used in such rules.
The syntax for these special types of document statements is:

[NUMBERED] [LEVEL number] [PARAGRAPH|TEXT] text

6.2.1 The text argument and embedded attributes

The text argument is a piece of text (of any length) to be generated as
part of the document being assembled if the conditions of the rule are
satisfied. A text argument may include embedded attributes, but is
not in itself an attribute, so DataLex does not attempt to obtain a value
(true/false) for it. DataLex recognises that a piece of text is text, not an
attribute, because it is preceded by the statement type PARAGRAPH
or TEXT.

However, DataLex does attempt to obtain a value for any attributes
embedded within the text, provided that those attributes are enclosed
in angle brackets (ie <attribute>).

For example, the following statement would cause all of the text
after ‘PARAGRAPH’ to be printed in a new paragraph. The values of
the embedded attributes (the attributes within angle brackets ie <>)
will be obtained from the user in a dialogue (see below).

PARAGRAPH I revoke all former testamentary dispositions

except clause(s) <list of clauses from the old will which are to be

saved> of my testamentary disposition dated <the date of the old will>

which clause(s) I hereby confirm.

The example given above and on the previous page will generate
the following dialogue:

1) Are all former testamentary disposition to be revoked ?

** n

2) What is list of clauses from the old will which are to be saved?

** 1, 5 and 17

3) What is the date of the old will ?

** 1 May 1993

REPORT

1. I revoke all former testatmentary dispositions except clause(s)

1, 5 And 17 of my testamentary disposition dated 1 May 1993 which

clause(s) I hereby confirm.

DOCUMENT ASSEMBLY USING DATALEX 47

6.2.2 Differences between PARAGRAPH and TEXT

The difference between the two types of statements is simply one of
layout: the PARAGRAPH statement places an HTML paragraph
marker before the text (ie a carriage return and a blank line) and
TEXT just inserts a space (ie no new line).

For example, the statements:

PARAGRAPH I revoke all former testamentary dispositions.

I give all my property to my husband.

will be generated as:

I revoke all former testamentary dispositions. I give all my property to my husband.

The correct code to cause the second sentence to be a new
paragraph is:

PARAGRAPH I revoke all former testamentary dispositions.

PARAGRAPH I give all my property to my husband.

PARAGRAPH must be used to cause a
new paragraph of text to be included in
a document. It is insufficient to simply
place new paragraphs or lines in the
text argument, as DataLex will ignore
these when it generates the document.

6.3 ‘Personalising’ documents - embedded attributes

Where a document contains variable information (eg the name of the
testator, the value of property, the date of death), this variable
information (an attribute) can be included in the text of a document
statement by embedding the attribute in the text. In the example
above, the embedded attribute ‘<list of clauses from the old will
which are to be saved>’ will cause the user to be prompted to list
those clause numbers, and the numbers will then be included in the
generated document. The embedded attribute ’<the date of the old
will>‘ will cause the user to be prompted for the value of that
attribute.

6.3.1 Relationship between named subjects and embedded attributes

DataLex will not recognise that an attribute is embedded in text just
because it has been declared to be a named subject. For example, the
declarations

DATE the date of the old will

STRING list of clauses from the old will which are to be saved

will not cause DataLex to ask the user for values in a rule where angle
brackets have been omitted, such as

PARAGRAPH I revoke all former testamentary dispositions

except clause(s) list of clauses from the old will which are to be

saved of my testamentary disposition dated the date of the old will

which clause(s) I hereby confirm.

48 DATALEX DEVELOPER ’S MANUAL

It is necessary to put attributes in angle
brackets (< >); merely making them
named subjects is insufficient.

However, merely putting an attribute in angle brackets does not
give it a type - to do so it is necessary to declare it as a named subject
as well. For example, in the dialogue above, an answer ’a few weeks
ago’ to the question ’What is the date of the old will ?’ will be
accepted. In contrast, if the declaration ’DATE the date of the old
will’ had been made, the following dialogue will occur:

3) What is the date of the old will ?

** a few weeks ago

Please respond with a date.

It is preferable to declare all embedded attributes as named
subjects, as well as embedding them in angle brackets, so as to
ensure that the user always gives the correct type of answer (eg a
date).

6.3.2 Prompts for embedded attributes

The prompt for an embedded attribute is always ’what is?’, even
if the embedded attribute is a named subject of type PERSON.
Therefore, it is necessary to either tolerate questions such as ’What is
the testator’s spouse?’ , or to embed attributes in the form ’<the
name of the testator’s spouse>’ so as to get a question ’What is the
name of the testator’s spouse?’. However, if this second approach is
taken, the embedded attribute will not match the named subject ’the
testator’s spouse’ and this may cause other problems when that
attribute is used elsewhere. In some cases it may be better to tolerate
the awkwardly phrased question.

6.4 Alternative clauses in a document

An important element in document assembly is to allow alternative
versions of a clause or paragraph or sentence to be generated,
depending on the user’s circumstances. For example, the structure of
the example given above for a clause of a will is as follows:

DOCUMENT Revocation PROVIDES

IF all former testamentary disposition are to be revoked THEN

NUMBERED PARAGRAPHAlternative text (1).......

ELSE

NUMBERED PARAGRAPHAlternative text (2)........

Because of the use of the IF-THEN-ELSE statement, which version
of the clause is generated depends upon the value of the attribute ‘all
former testamentary disposition are to be revoked’. The user will be
prompted for a value for this attribute by being asked ‘Are all former
testamentary disposition to be revoked?’. If the user answers ‘yes’,
then text (1) will be generated, but otherwise (ELSE) text (2) will be
generated.

DOCUMENT ASSEMBLY USING DATALEX 49

By the use of IF-THEN-ELSE statements, and any other conditional
statements used in DataLex, templates for complex documents may
be created.

6.5 Generating successive paragraphs of a document - use of
CALL statements

The discussion above concentrates on the generation of single
paragraphs of documents. To assemble a whole document it is
usually necessary to create a GOAL rule which provides an overall
procedural order for the creation of the document. For example, in
the Will Generator example below, the following GOAL rule is used:

GOAL DOCUMENT Last Will & Testament PROVIDES

the date of execution of the will IS today

CALL Preamble

CALL Revocation

CALL Contemplation of Marriage

By use of the CALL statement, this rule calls three other rules in
succession, those with the names ‘Preamble’, ‘Revocation’ and
‘Contemplation of Marriage’. In effect, it provides that this is the
correct order of assembly of the clause of this document. The names
following CALL must match the names of DOCUMENT rules.

The use of CALL statements may also be made conditional. For
example, where a clause generated by a rule named ’Revocation’ can
only be used if a particular section of an Act applies (eg the Contracts
Act s17), then the following CALL statement could be used:

IF s17 Contracts Act applies THEN CALL Revocation

6.5.1 Document generation is essentially procedural

This use of CALL statements as the basic method of assembling
documents means that document assembly with DataLex is
essentially procedural rather than declarative. Backward and
forward chaining rules will rarely be useful to control the order of
assembly of a document, because their normal usage is as rules
which fire when needed, rather than in a controlled order (such as
occurs with CALL statements). However, as discussed below, the
evaluation of attributes used in DOCUMENT rules may trigger the
operation of backward and forward chaining rules.

6.6 Numbering paragraphs

6.6.1 The NUMBERED keyword

If a statement is prefixed with the NUMBERED keyword, the
paragraph will be numbered automatically.

50 DATALEX DEVELOPER ’S MANUAL

6.6.2 The LEVEL keyword

The optional LEVEL keyword is used to control the type of numbering
to be employed. number must be between 1 and 7 (inclusive). The
numbering style at each level is:

1. Level One
(1) Level Two
(a) Level Three
(i) Level Four
(A) Level Five
(I) Level Six
- Level Seven

Levels can be skipped (ie it is possible to go directly, say, from Level
One to Level Three).

6.7 Integration of inferencing and document generation

One of the main strengths of DataLex as a document generator is
that the document generation is fully integrated with forward and
backward chaining inferencing. Therefore, where the evaluation of
any statutory provision or other legal condition is a precondition for
the generation of part of a document, it is only necessary to make the
appropriate attribute a condition in the DOCUMENT rule, and
DataLex will automatically use backward and forward chaining to
interact with other parts of the rule-base.

For example, a statement in a DOCUMENT rule such as

IF the Act applies THEN PARAGRAPH(text follows)...

will cause DataLex to backward chain to evaluate a rule that has ’the
Act applies’ as a conclusion.

Note that the first DOCUMENT rule must be a GOAL rule or else
DataLex will not produce a document.

6.8 Use of other DataLex features with document assembly

Some normal DataLex commands do not have any meaningful use
when a DOCUMENT rule is being evaluated. The ’Why’ command
will only result in sensible answers when DataLex is evaluating an
attribute in a RULE.

Conclusions from rules are generated during a document
generation consultation, and are shown as numbered blue buttons.
Explanations (How?) can be shown by selecting a conclusion. If a
document is generated by a consultation, no separate Report is also
generated – the Document replaces the Report.

The following DataLex functions do operate with document
assembly: Facts (’What’ command) appear as numbered green

DOCUMENT ASSEMBLY USING DATALEX 51

buttons; ’Forget’ and ’Forget All’ will forget facts and generate
alternative documents.

Hypertext links to legislation (automatic links) or to defined terms
or other text (explicit links) can be used with document generation in
the same fashion as with other DataLex inferencing.

6.9 Example - a will generator

See <http://austlii.community/wiki/DataLex/WillGeneratorKB>
for the simple will generator reproduced below. Note the following
aspects:

• The GOAL Document is largely comprised of procedural steps.

• The attribute ‘the person making the Will is legally capable of
making a Will’ causes the evaluation of the ‘Capability’ rule, by
backward chaining. This rule could be expanded much further.

• The use of embedded attributes such as <list of clauses from the old
will which are to be saved>, <the testator/testatrix’s fiancee> and
<the joint beneficiaries>.

DATE the date of execution of the Will

DATE the date of the old Will

INTEGER the maximum number of months within which the wedding must take place

PERSON the person making the Will

PERSONTHING the sole beneficiary

PERSON the sole executor

PERSON the testator/testatrix’s fiancee

PERSON the joint beneficiaries

GOAL DOCUMENT Last Will & Testament PROVIDES

IF the person making the Will is legally capable of making a Will THEN BEGIN

CALL Disclaimer

CALL Preamble

CALL Revocation

CALL Contemplation of Marriage

CALL Sole Beneficiary

CALL Attestation END

ELSE the person making the Will should not make a Will

RULE Capability PROVIDES

the person making the Will is not legally capable of making a Will ONLY IF

the person making the Will is not of sound mind OR

s6 of the Wills, Probate and Administration Act 1898 applies OR

the person making the Will is subject to some other form of incapacity

DOCUMENT Disclaimer PROVIDES

PARAGRAPH Disclaimer: This is not a real Will and must not be used as such.

This will does not purport to accurately represent the law of any jurisdictions.

DOCUMENT Preamble PROVIDES

PARAGRAPH This will dated <the date of execution of the Will> is

http://austlii.community/wiki/DataLex/WillGeneratorKB

52 DATALEX DEVELOPER ’S MANUAL

made by me <the person making the Will>, of

<the testator/testatrix’s address>, <the testator/testatrix’s occupation>.

DOCUMENT Revocation PROVIDES

IF all former testatmentary disposition are to be revoked THEN

NUMBERED PARAGRAPH I revoke all former testatmentary dispositions.

ELSE

NUMBERED PARAGRAPH I revoke all former testamentary dispositions

except clause(s) <list of clauses from the old will which are to be

saved> of my testamentary disposition dated <the date of the old Will>

which clause(s) I hereby confirm.

DOCUMENT Contemplation of Marriage PROVIDES

IF this Will is to be made in contemplation of marriage THEN

IF the Will is to be conditional on the marriage actually

taking place THEN

IF the person making the Will is domiciled in Western Australia AND

the person making the Will does not own immovables in other States

THEN

NUMBERED PARAGRAPH This will is made in

contemplation of my marriage with

<the testator/testatrix’s fiancee>.

ELSE

NUMBERED PARAGRAPH This will is made in

contemplation of my marriage with

<the testator/testatrix’s fiancee>

and is conditional on the marriage taking place

within <the maximum number of months within which the

wedding must take place> months.

ELSE IF the testator/testatrix is domiciled in Western Australia THEN

NUMBERED PARAGRAPH This will is made in contemplation of my

marriage with <the testator/testatrix’s fiancee>

but shall not be void if the marriage does not take place.

ELSE

NUMBERED PARAGRAPH This will is made in contemplation of my

marriage with <the testator/testatrix’s fiancee>

but is not conditional on the marriage taking place.

DOCUMENT Sole Beneficiary PROVIDES

IF everything disposed of under the Will is to be left one person THEN BEGIN

IF the sole beneficiary is over 18 THEN

NUMBERED PARAGRAPH I give the whole of my estate to

<the sole beneficiary> whom I appoint my sole executor.

ELSE BEGIN

NUMBERED PARAGRAPH I give the whole of my estate to

<the sole beneficiary>

NUMBERED PARAGRAPH I appoint the <the sole executor>

as my sole executor. END

END ELSE BEGIN NUMBERED PARAGRAPH I give the whole of my estate in equal

shares to <the joint beneficiaries>

NUMBERED PARAGRAPH I appoint the <the sole executor> as my

sole executor. END

DOCUMENT Attestation PROVIDES

DOCUMENT ASSEMBLY USING DATALEX 53

PARAGRAPH Signed by the testator in our presence and attested by us in the

presence of him and each other.

7
Case-based (example-based) inferencing using DataLex

7.1 Example-based reasoning – overview

In addition to rule-based inferencing, DataLex also supports one
very limited form of analogous reasoning (also known as
‘example-based’ or ‘case-based’ reasoning). This form of analogous
reasoning is based on a method of measuring similarity of examples
(and drawing conclusions from this) called PANNDA (Precedent
Analysis by Nearest Neighbour Discriminant Analysis), developed
by Alan Tyree and described in his book Expert Systems in Law,
Prentice Hall, 1990. See also further explanation below.

The PANNDA inferencing component is included in this version of
DataLex primarily to allow experiments to be carried out in (i) quasi-
natural language representations of examples; (ii) the integration of
rule-based and case-based reasoning, and (iii) the integration of case-
based reasoning with hypertext and text retrieval. The inferencing
methods used by PANNDA are, in this context, of secondary interest
and not the main point of the exercise, although they are of interest in
their own right.

7.2 Relationship between examples and rules in DataLex’s
inferencing

PANNDA is implemented in DataLex as types of rules which are
called EXAMPLEs. A set of EXAMPLEs is used, for example, to
represent all of the cases on a particular legal question. This legal
question will be represented as an attribute which is the conclusion
of each EXAMPLE. When DataLex obtains the facts of a problem
from the user, it compares the facts of the problem to the facts in the
EXAMPLEs, and tries to find which is the ‘nearest case’.

When DataLex is trying to infer a value for an attribute and no
further rules can be found to assist, it will look to see if the attribute
is the subject of an example set. Example-based reasoning is therefore
only used ‘when the rules run out’ (to use one well-known
formulation).

This type of reasoning is most usefully used when there are a set
of cases (or other types of examples) which do not seem to conform

56 DATALEX DEVELOPER ’S MANUAL

to any obviously discernible rule, but have various factors which
recur from case to case (although with different values), and where
no single case provides any binding authority.

7.3 Knowledge representation – EXAMPLEs

A set of cases is represented as a set of EXAMPLEs, where an
EXAMPLE is a particular type of rule declaration.

An EXAMPLE commences with the keyword EXAMPLE, followed
by the name of the EXAMPLE and the keyword PROVIDES. The first
EXAMPLE in a set would normally be declared to be a GOAL, but
there would normally be little point in declaring other EXAMPLEs
to be GOALs. A knowledge-base containing only an EXAMPLE set
would treat the first EXAMPLE as a GOAL.

The content of an EXAMPLE is normally an assignment (an
expression which uses the ONLY IF keyword), such as:

EXAMPLE Armory v Delamirie [1722] EWHC KB J94 PROVIDES

the finder wins ONLY IF

the finder was not the occupier of the premises AND

the chattel was not attached AND [etc]

Each EXAMPLE in the set must have the same conclusion (the
attribute preceding ONLY IF), or its negation. In the ‘finder’s cases’
example above and below, the common conclusion is the attribute
‘the finder wins’ (or its negative form ‘the finder does not win’). The
keywords ONLY IF therefore function in a rather different way in
EXAMPLEs than in RULEs. An EXAMPLE could be considered as
meaning something like ‘An EXAMPLE where the finder wins,
Armory v Delamirie, IS the finder was not the occupier of the
premises AND the chattel was not attached AND [etc]’,

7.3.1 Automatic attributes and example names

It is important that each EXAMPLE be named sensibly. In most
instances, the name of a case will be the name of an EXAMPLE (eg
Armory v Delamirie [1722] EWHC KB J94).

This name is used to construct three automatic attributes of the
form:

the situation is similar to example-name;

the situation is on all fours with example-name; and

example-name can be distinguished

These automatic attributes are used by PANNDA to generate
reports.

http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html
http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html

CASE-BASED (EXAMPLE-BASED) INFERENCING USING DATALEX 57

7.3.2 Formal syntax for an EXAMPLE

The syntax for defining examples which form part of an example set is
a restricted version of that used for rules:

[GOAL] EXAMPLE [RULE] name PROVIDES
[IF expression THEN] assignment

The expression component of either the IF guard or the assignment
itself, should consist of a number of relative expressions separated by
an AND operator. Each relative expression (normally just an attribute
descriptor) should represent one significant facet of the example.

The OR connector should not be used – if you really have to, use
AND/OR instead.

The IF-THEN form should only be used where the attribute about
which the example relates is non-boolean.

7.4 An example of a case representation by EXAMPLEs

The following is the knowledge representation for one case on the
finding of chattels.

EXAMPLE Armory v Delamirie [1722] EWHC KB J94 PROVIDES

the finder wins ONLY IF

the finder was not the occupier of the premises AND

the chattel was not attached AND

the non-finder was not the owner of the real estate AND

the non-finder was not the owner of the chattel AND

there was a bailment of the chattel AND

there was not a term in a lease which mentioned found items AND

there was not a master-servant relationship between the parties AND

the chattel was not hidden AND

there was not an attempt to find the true owner of the chattel AND

there was prior knowledge of the existence of the chattel

7.5 Reports generated by DataLex EXAMPLE reasoning

An example of a simple Report generated by the FINDER KB follows.

Mr Sweep wins because the situation is similar to Hannah v Peel

[1945] KB 509 and South Staffordshire Water Co v Sharman

[1896] 2 QB 44 can be distinguished.

The situation is similar to Hannah v Peel [1945] KB 509 because:

Mr Sweep was not the occupier of the premises; Mr Lud was the

owner of the real estate; and there was not a bailment of the chattel.

South Staffordshire Water Co v Sharman [1896] 2 QB 44 can be

distinguished because there was not a master-servant relationship

between the parties.

58 DATALEX DEVELOPER ’S MANUAL

7.6 Principles behind the case-based inferencing component

The underlying mechanism used to handle analogous reasoning is
based on Alan Tyree’s PANNDA (Precedent Analysis by Nearest
Neighbour Discriminant Analysis) algorithm. The theory behind
PANNDA is described in A Tyree Expert Systems in Law,
Prentice-Hall, 1990. For further details of this approach see articles
co-authored by Alan Tyree, and references to PANNDA and ‘the
Finders’ cases’, in ‘The Datalex Project: History and Bibliography’
cited in Chapter 1. A key aspect of PANNDA is that each matching
attribute is weighted on the basis of how poorly it divides the example
set, as measured by its inverse variance.

7.6.1 PANNDA inferencing

When the system is about to attempt to infer a value for an attribute
using an example set, it first finds all examples which relate to it
(that is, all examples where the attribute appears as the target of an
assignment). It then infers (or asks the user for) a value for all
attributes used in the examples. Finally, it compares each example
with the situation described by these attribute values and finds the
nearest and furthest example. The furthest example is the one with
the closest facts but giving a different result to the nearest one.

The target attribute is set to the same value as the nearest
example. The similar or all-fours attribute for the nearest example is
set to true. If the example is not on all fours, the distinguished
attribute is also set for the furthest case. All of these attributes
(including the target attribute itself) receive sensible explanatory
associations (for how/reporting). Not all possible supporting
attributes are used for explanations. Rather, only significant ones are
reported (significant attributes are those which tend to, in themselves,
divide the example set or in this instance have unusual values).

7.6.2 PANNDA’s DataLex implementation

The main difference between earlier versions of PANNDA and this
one is the use of the quasi-natural language knowledge
representation.

The original PANNDA approach has also been extended in several
minor respects:

• The original PANNDA algorithm dealt only in boolean facts and
outcomes. There has never really been any good reason why the
outcomes had to be boolean (they are not used in determining
which case to follow or distinguish). Accordingly, this restriction
has been dropped in the DataLex implementation.

• DataLex also supports non-boolean facts. The variance for each of
these is calculated in the context of the present fact value.

CASE-BASED (EXAMPLE-BASED) INFERENCING USING DATALEX 59

Accordingly, care should be taken with use of equality operators.
These should only be used where the fact can only take one of a
discrete number of values.

• It is not necessary that each example contains all of the attributes
used in other examples. This feature can be used to generalise the
effect of an example. The missing attributes become, in effect, wild.
Such examples, are, of course, much easier to match. Again caution
is called for.

7.7 Steps in developing an EXAMPLE set

1. Identify an attribute which cannot be determined in any obvious
rule-based way, but for which there are a set of cases or other
examples which give a value for that attribute as their conclusion.
Treat that attribute as the conclusion attribute of the example set.

2. For each case, identify all the aspects of the case which appear to
have some bearing on the outcome of the case (ie the value of the
conclusion attribute). This is where legal expertise is involved.
Define each of these aspects as a DataLex attribute.

3. Analyse all of the cases to establish (if possible) the value of each
of the attributes identified for any of the cases.

4. Represent each case as an EXAMPLE, with values for as many of
the attributes as are known for that case. It does not matter that
values for some attributes are not known.

7.7.1 RULEs, EXAMPLEs and DOCUMENTS can interact

The values of attributes used in EXAMPLEs (eg ‘the finder was not
the occupier of the premises’, as used in the example below), will be
determined (in the first instance) by backward chaining to determine
if there is a RULE with that attribute as conclusion. Where a RULE
uses an attribute, backward chaining will invoke an EXAMPLE with
that conclusion once all RULEs have been exhausted. The same
applies where an attribute is used in a DOCUMENT rule.

If an attribute which is evaluated by an example set is intended to
be a GOAL, it may be necessary to create a rule along the following
lines.

GOAL RULE Determine whether the finder wins PROVIDES

DETERMINE the finder wins

60 DATALEX DEVELOPER ’S MANUAL

7.7.2 Use of hypertext links with EXAMPLE rules

Hypertext links to sources can be used with EXAMPLE rules as with
any other rules (as detailed in Chapter 5):

• Automatic links will be made to any properly described Australian
legislation;

• Explicit links may be made from any other text using the LINK
TO keywords;

• Embedded searches may be linked to any terms using the LINK
. . . . TO keywords, such as to terms in keywords which have
been interpreted by case law, like ‘bailment’ or ‘occupier’ (as in the
Finder KB below).

• Automatic links to properly cited cases, as discussed below.

With EXAMPLE rules based on decisions in particular cases, it is
particularly important that a full title and citation for the decision be
included in the title of the EXAMPLE. This will then result in the
automatic creation of a hypertext link to either (i) the text of the
decision, if the decision is included in AustLII or another
collaborating LII (eg NZLII, BAILII, HKLII, PacLII, SafLII, CanLII),
or (ii) the LawCite citator, if the decision has a citation table there.
The LawCite record for a decision can also be accessed from that
decision.

Automatic links to cases means, as in the example Report given
in 7.5 above, that the user can go to the cases cited in the Report, in
order to assess whether they agree with the suggestions for following
and distinguishing particular cases given in the Report. In making
such a decision they can inspect not only the text of the suggested
cases, but also the LawCite record for each of the suggested cases in
order to determine whether there are subsequent cases that have a
bearing on the suggested cases (and may have been decided after the
knowledge-base was written). For discussion of the value of such
facilities, see the article ‘Utilising AI in the Legal Assistance Sector –
Testing a Role for Legal Information Institutes’ cited in Chapter 1.

Furthermore, links to these cases are available to provide
assistance when the user is answering questions relevant to a case. In
the Finder KB example, when the user is asked about the finder ‘Was
he the occupier of the premises ?’, and responds ‘Why?’, the system
replies ‘This will help determine whether or not the situation is
similar to Armory v Delamirie [1722] EWHC KB J94.’, with a link to
the LawCite citator entry (Figure 7.1).

http://www.bailii.org/ew/cases/EWHC/KB/1722/J94.html

CASE-BASED (EXAMPLE-BASED) INFERENCING USING DATALEX 61

Figure 7.1: LawCite records for Armory
v Delamirie.

7.7.3 Example – the ‘finder’s cases’

The Finder KB can be accessed from the DataLex Community page on
AustLII Communities, or directly to its location at <http://austlii.
community/wiki/DataLex/FinderKB>. Note these aspects:

• Each EXAMPLE rule includes in its name a full citation to the case
on which it is based.

• The ‘trespasser rule’ RULE is evaluated before the EXAMLE rules
(it should include authority for the proposition it states, but is
incomplete).

PERSON the finder

PERSON the non-finder

GOAL RULE the finder wins PROVIDES

DETERMINE the finder wins

RULE trespasser rule PROVIDES

IF the finder is a trespasser THEN the finder does not win

EXAMPLE Armory v Delamirie [1722] EWHC KB J94 PROVIDES

the finder wins ONLY IF

the finder was not the occupier of the premises AND

the chattel was not attached AND

the non-finder was not the owner of the real estate AND

the non-finder was not the owner of the chattel AND

there was a bailment of the chattel AND

there was not a term in a lease which mentioned found items AND

there was not a master-servant relationship between the parties AND

the chattel was not hidden AND

there was not an attempt to find the true owner of the chattel AND

there was prior knowledge of the existence of the chattel

EXAMPLE Bridges v Hawkesworth (1851) 21 LJQB 75 PROVIDES

the finder wins ONLY IF

the finder was not the occupier of the premises AND

the chattel was not attached AND

the non-finder was the owner of the real estate AND

http://austlii.community/wiki/DataLex/FinderKB
http://austlii.community/wiki/DataLex/FinderKB

62 DATALEX DEVELOPER ’S MANUAL

the non-finder was not the owner of the chattel AND

there was a bailment of the chattel AND

there was not a term in a lease which mentioned found items AND

there was not a master-servant relationship between the parties AND

the chattel was not hidden AND

there was an attempt to find the true owner of the chattel AND

there was not prior knowledge of the existence of the chattel

EXAMPLE Elwes v Brigg Gas (1886) 33 Ch D 562 PROVIDES

the finder does not win ONLY IF

the finder was the occupier of the premises AND

the chattel was attached AND

the non-finder was the owner of the real estate AND

the non-finder was not the owner of the chattel AND

there was not a bailment of the chattel AND

there was a term in a lease which mentioned found items AND

there was not a master-servant relationship between the parties AND

the chattel was hidden AND

there was an attempt to find the true owner of the chattel AND

there was not prior knowledge of the existence of the chattel

EXAMPLE Hannah v Peel [1945] KB 509 PROVIDES

the finder wins ONLY IF

the finder was not the occupier of the premises AND

the chattel was not attached AND

the non-finder was the owner of the real estate AND

the non-finder was not the owner of the chattel AND

there was not a bailment of the chattel AND

there was not a term in a lease which mentioned found items AND

there was not a master-servant relationship between the parties AND

the chattel was hidden AND

there was an attempt to find the true owner of the chattel AND

there was not prior knowledge of the existence of the chattel

EXAMPLE Corporation of London v Yorkwin [1963] 1 WLR 982 PROVIDES

the finder does not win ONLY IF

the finder was the occupier of the premises AND

the chattel was attached AND

the non-finder was the owner of the real estate AND

the non-finder was not the owner of the chattel AND

there was a bailment of the chattel AND

there was a term in a lease which mentioned found items AND

there was not a master-servant relationship between the parties AND

the chattel was hidden AND

there was an attempt to find the true owner of the chattel AND

there was not prior knowledge of the existence of the chattel

EXAMPLE Moffatt v Kazana [1969] 2 QB 152 PROVIDES

the finder does not win ONLY IF

the finder was the occupier of the premises AND

the chattel was not attached AND

the non-finder was not the owner of the real estate AND

the non-finder was the owner of the chattel AND

there was not a bailment of the chattel AND

CASE-BASED (EXAMPLE-BASED) INFERENCING USING DATALEX 63

there was not a term in a lease which mentioned found items AND

there was not a master-servant relationship between the parties AND

the chattel was hidden AND

there was an attempt to find the true owner of the chattel AND

there was prior knowledge of the existence of the chattel

EXAMPLE South Staffordshire Water Co v Sharman [1896] 2 QB 44 PROVIDES

the finder does not win ONLY IF

the finder was not the occupier of the premises AND

the chattel was attached AND

the non-finder was the owner of the real estate AND

the non-finder was not the owner of the chattel AND

there was not a bailment of the chattel AND

there was not a term in a lease which mentioned found items AND

there was a master-servant relationship between the parties AND

the chattel was hidden AND

there was an attempt to find the true owner of the chattel AND

there was not prior knowledge of the existence of the chattel

EXAMPLE Yorkwin v Appleyard [1963] 1 WLR 982 PROVIDES

the finder does not win ONLY IF

the finder was not the occupier of the premises AND

the chattel was attached AND

the non-finder was not the owner of the real estate AND

the non-finder was not the owner of the chattel AND

there was not a bailment of the chattel AND

there was not a term in a lease which mentioned found items AND

there was a master-servant relationship between the parties AND

the chattel was hidden AND

there was an attempt to find the true owner of the chattel AND

there was not prior knowledge of the existence of the chattel

8
DataLex user interface manual

8.1 Relationship to the previous chapters

Most user interface features are affected by choices by the developer
in how the knowledge-base is written. The following extract from
a consultation using the ElectKB application on Australian electoral
law will be used throughout this chapter to illustrate aspects of the
interface.

Figure 8.1: DataLex user interface
features: Consultation, Facts,
Conclusions, Related Materials.

8.2 Starting a consultation

A consultation is usually started by the user going to the knowledge-
base, and selecting ‘Run consultation’ from above the KB text. It is
possible to create a link to directly invoke the consultation, but this

66 DATALEX DEVELOPER ’S MANUAL

has the disadvantage (in the normal case) that the user does not see
the KB text, including any reservations or caveats that the author may
have expressed about it.

Figure 8.2: Click ’Run Consultation’ to
start a DataLex Consultation.

8.3 Choice of goals

Except in a consultation that has only one goal, it is necessary for the
user to select which goal will be evaluated, by selecting the
appropriate numbered gray button for the desired goal. A number
can be entered instead.

Figure 8.3: Choice of goals at start of
Consultation.

8.4 Answering questions

Most questions asked by DataLex require a yes/no/uncertain
response. These can be issued by clicking the relevant button (at the
bottom of the screen) or by typing the response into the text field.

Figure 8.4: Answering questions
during Consultation.

8.4.1 Buttons and numbers

Where a question can be answered by selecting a numbered button, it
can also be answered by typing the number and pressing enter.

DATALEX USER INTERFACE MANUAL 67

8.4.2 Why? – Providing reasons for questions

The Why? command (at the bottom of the screen) can be given to any
question asked when a RULE or EXAMPLE (but not a DOCUMENT)
is being evaluated.

In the current user interface, the Why command can be re-issued,
in order to show the next attribute on the explanation stack (ie a
broader reason why the current question is being asked).

8.4.3 Hypothetical answers (What-if?)

The What-if? button (at the bottom of the screen) can be selected in
response to any question, in order to test what conclusions or other
responses will be generated if the given answer is correct. What-if?
must be de-selected in order for the consultation to continue.

8.4.4 Uncertain answers

If ‘Uncertain’ (at the bottom of the screen) is selected in response to
any question, the dialogue may continue if a value for that attribute
is not essential to a conclusion being reached. If ‘Uncertain’ is
sufficient to require a particular conclusion to be reached, a Report
will be generated to that effect.

8.5 Showing facts (What?)

All facts known are shown automatically, either as user-provided
facts (numbered green buttons) or as inferred facts (numbered blue
buttons).

8.6 Forgetting facts (Forget)

Selecting a green numbered button will cause that fact to be forgotten,
and the consultation to go back to that point in the dialogue.

Figure 8.5: Forgetting facts during
Consultation.

8.6.1 Forgetting all facts

‘Forget All’ appears at the top right of the list of known facts, and can
be selected in order to forget all facts and re-start the consultation.
Typing ‘forget all’ in response to any question will also cause all facts
to be forgotten and the consultation to re-start. Also, at the conclusion
of the current consultation, the user is asked if (s)he wishes to forget
all current facts. The consultation can also be restarted from verbose
mode, by selection of the ‘Restart consultation’ link.

68 DATALEX DEVELOPER ’S MANUAL

8.7 Obtaining explanations for conclusions (How?)

Selecting a numbered blue conclusion button will result in an
explanation for that conclusion being displayed in a pop-up.

Figure 8.6: DataLex ‘How’ explanation
during consultation.

8.8 Reports

At the conclusion of consultation a Report is generated, setting out
all reasoning which is essential to the conclusion which has been
reached. Some conclusions reached will not be displayed in the
Report, because they were not essential to the final conclusion (these
are often conclusions generated by forward-chaining rules). Reports
contain such hypertext links as are automatically provided or
explicitly linked.

Reports can be downloaded (as RTF, PDF, HTML or TXT), printed,
or displayed in a full window.

Figure 8.7: DataLex Report generated
after a consultation.

8.8.1 Documents generated

Where a document is generated, a Report is not also generated, but
conclusions and explanations for them may be viewed (see above).

DATALEX USER INTERFACE MANUAL 69

8.9 Links to sources

Where links are provided in the KB, either automatically or explicitly,
to sections of Acts, cases, and other relevant sources of rules, then
these links will appear in questions, conclusions, explanations (Why?
and How?), Related Materials and Reports.

8.9.1 Returning to the dialogue

Selecting a hypertext link will cause the linked content to appear (i)
in the whole window of the consultation, or (ii) alternatively, only in
the right-hand panel.

To return to the dialogue either use the back button in situation (i),
or the cancel (X) button at the top right of the the right-hand panel in
situation (ii).

8.9.2 Related materials

The names of current rules being evaluated (and previous rules
evaluated), including any hypertext links to sources contained in
those rule names, are shown under ‘Related Materials’ on the bottom
right, and may be selected for display at any time.

8.10 Viewing consultations in verbose mode

If the gear wheel at the bottom right of the consultation interface is
selected, the user is given three options for different means of viewing
details of the evaluation of the knowledge-base as the consultation
progresses.

8.10.1 Viewing the rule being evaluated

In default, the ‘Rule’ option is displayed, showing the rule(s)
currently being evaluated. Selecting ‘See more. . . ’ under that rule,
will display the next rule in the knowledge-base.

8.10.2 Viewing the consultation in Verbose mode

Choosing ‘Verbose’ mode causes an explanation of why the
consultation asks questions, and what it concludes from them, to be
displayed. For example:

* DETERMINED VALUE FOR the sex of the nominee

* DETERMINED VALUE FOR the age of the nominee

* FORWARD-CHAINING FOR the age of the nominee

* BLOCKED Commonwealth Electoral Act 1918 - Section 163(1)(a)

* FIRING Acts Interpretation Act 1901 Schedule 1

* DETERMINED VALUE FOR the definition of "adult" under Schedule 1 of

the Acts Interpretation Act 1901 Schedule 1 is met

* FORWARD-CHAINING FOR the definition of "adult" under Schedule 1 of

70 DATALEX DEVELOPER ’S MANUAL

the Acts Interpretation Act 1901 Schedule 1 is met

* FIRING Acts Interpretation Act 1901 Schedule 1

* DETERMINED VALUE FOR the nominee is an adult

* DETERMINED VALUE FOR section 163(1)(a) of the Commonwealth

Electoral Act 1918 is satisfied

8.10.3 Saving the transcript of a consultation

Choosing ‘Transcript’ gives the user a choice of including in a
transcript one or more of ‘Conversations’, ‘Facts’, ‘Conclusions’ and
‘Report’, and also whether the transcript should imitate the layout of
the consultation, or just be in plain text. As yet, the transcript cannot
automatically be saved anywhere, and nor can previous transcripts
be uploaded in order to save time in entering a long set of facts for
testing purposes.

.

Australasian Legal Information Institute (AustLII)
A joint facility of UTS and UNSW Faculties of Law

Level 12, 235 Jones St
Ultimo NSW 2007
Australia

T: +61 2 9514 4921
E: datalex@austlii.edu.au
W: http://www.austlii.edu.au/

	DataLex legal knowledge-base systems
	Components of AustLII's DataLex legal knowledge-base systems
	Conventions used in this Manual
	Theoretical foundations of the DataLex approach
	Creating a new knowledge-base in the DataLex Community
	Creating a new knowledge-base using the Development Tools
	Updates to this Manual

	Rule-based inferencing (I): Knowledge-bases and rules
	Introduction
	Knowledge-bases and rules
	Content of rules - keywords and descriptors
	Example of a rule – FOI Act s11
	Running and de-bugging a DataLex application
	Some style guidelines for DataLex applications

	Rule-based inferencing (II): Descriptors, keywords and expressions
	Attributes (or `Facts')
	Constants
	Generating questions and explanations
	Named subjects - names of people and things
	Variable attributes [advanced]
	Expressions - the use of operators

	Rule-based inferencing (III): Rule types, statements and evaluation order
	Order of evaluation of rules, and within rules, in inferencing
	Goals - LISTED rules and GOAL rules
	Order of evaluation of rules
	Types of rules
	Statements
	Appendix – List of Main Keywords (all types) used by DataLex

	Integration of DataLex knowledge-bases with AustLII and other LIIs
	Overview - Integration of DataLex knowledge-bases with their sources
	Automatic links to AustLII legislation
	Automatic links to case law
	Explicit links in a knowledge-base (the LINK ... TO ... keywords)
	Stored searches from DataLex knowledge-bases
	`Co-operative inferencing' – knowledge-bases in multiple locations

	Document assembly using DataLex
	DOCUMENT rules
	Text generation statement types - PARAGRAPH and TEXT
	`Personalising' documents - embedded attributes
	Alternative clauses in a document
	Generating successive paragraphs of a document - use of CALL statements
	Numbering paragraphs
	Integration of inferencing and document generation
	Use of other DataLex features with document assembly
	Example - a will generator

	Case-based (example-based) inferencing using DataLex
	Example-based reasoning – overview
	Relationship between examples and rules in DataLex's inferencing
	Knowledge representation – EXAMPLEs
	An example of a case representation by EXAMPLEs
	Reports generated by DataLex EXAMPLE reasoning
	Principles behind the case-based inferencing component
	Steps in developing an EXAMPLE set

	DataLex user interface manual
	Relationship to the previous chapters
	Starting a consultation
	Choice of goals
	Answering questions
	Showing facts (What?)
	Forgetting facts (Forget)
	Obtaining explanations for conclusions (How?)
	Reports
	Links to sources
	Viewing consultations in verbose mode

	ADP59D6.tmp
	University of New South Wales Law Research Series

	ADP9905.tmp
	University of New South Wales Law Research Series

